
API del MerkaWeb® 20070118-rev.0

 Página 1 de 32

Manual de Programación

API del
MerkaWeb®

ÍNDICE

1. Introducción.

2. Clase MKWConn.

3. Clase MKWIdiomas.

4. Clase MKWFind.

5. Clase MKWUsuario.

6. Clase MKWMail.

7. Clase MKWTemplate.

8. Referencias.

9. Datos generados.

Autor Koldo G. Castillo
Modificado el 19 de enero de 2007

API del MerkaWeb® 20070118-rev.0

 Página 2 de 32

1. Introducción.

La API es un conjunto de clases, funciones, variables y constantes, destinadas a:

1. Poder acceder a la información de la base de datos del gestor, sin necesidad de conocer su
distribución (tablas, campos y relaciones.

2. La información obtenida está debidamente formateada.
3. Funciones principales para la obtención de la Web.
4. Utilidades que faciliten el trabajo al usuario.

Esta compuesto por una clase principal que instancia el resto de clases e incluye los archivos que
contienen funciones y constantes globales.

Clases:

 MKWConn api.inc gestiona la petición de las webs.
 MKWIdiomas apiidiomas.inc gestión de los idiomas.
 MKWFind apifind.inc búsqueda de elementos en la base de datos.
 MKWUsuario apiusuario.inc gestión del registro de usuarios en la web.
 MKWMail apimail.inc utilidad para enviar correos a varias personas.
 MKWTemplate apitemplate.inc gestión de las plantillas.

Funciones y constantes:

 Funciones apiformat.inc funciones de formateo de los datos.
 Constantes apidefines.inc constantes globales.

API del MerkaWeb® 20070118-rev.0

 Página 3 de 32

2. Clase MKWConn.

2.1. Variables:

Clases instanciadas:

$Idiomas gestión de idiomas.
$Find gestión de busquedas.
$Template gestión de plantillas.
$Usuario gestión del usuario registrado.

Configuración de la Website:

$name_plantilla nombre de la Website.
$ctrlseccion filtro de la Website para buscar información.
$SecDef sección inicial de la Website.
$grupo_boletin grupo de boletín de la Website.
$boletin_email email de envío del boletín de la Website.
$boletin_entidad nombre del email de envío del boletín de la Website.
$idioma_defecto idioma por defecto de la Website.
$googlecode código de la Website para unir a google-analitics.
$id_plantilla identificador de la Website.
$url_web dirección URL de la Website.
$con_sinpermiso contenido que mostrar si no tiene acceso a la Website.
$perfilusuarios; perfil de permisos por defecto para los usuarios al registrarse.

Variables de carácter general:

$Conn Conexión directa con la base de datos.
$Idioma Idioma con el que se está trabajando (abreviatura).
$Migas Datos que procesar (idioma, parámetros, sección y contenido).

2.2. Funciones Internas:

Son funciones de uso interno, tanto desde la creación o la llamada al API, hasta la carga inicial de
datos y su procesamiento.

No es necesario que el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” recurra a estas funciones.

function MKWConn ();
Entrada --ninguna--
Salida Instancia de la clase
Funcionamiento 1. Inicia las variables de la clase.

2. Crea las instancias de las clases que necesita y las asigna a sus
variables.

function Conectar ($urlIndex);
Entrada $urlIndex puede ser la Url de la web o la Firma.
Salida true/false en función a si ha podido conectar o no.
Funcionamiento 1. Conectar con la base de datos (si no puede =>false)

2. Cargar los datos de la plantilla en las variables(si no puede => false)
3. Si hay archivo de procesos en la carpeta de la plantilla, carga sus

funciones.
4. Iniciar la sesión.
5. Cargar los datos de petición de la web en la variable MIGAS (código

API del MerkaWeb® 20070118-rev.0

 Página 4 de 32

de sección, código de contenido, tipo de contenido, acción, $_GET y
$_POST), y en las clases: Idiomas, Find, Template y Usuario.

6. Si existe la función de pre-proceso (debería estar en el archivo de
procesos de la plantilla), la ejecuta.

7. En función al tipo de contenido que se haya pedido, lo busca y lo
carga en los datos del contenido.

a. Comprobando que si es privado, el usuario registrado tenga
acceso, sino, carga el contenido que indica que no tiene
permiso (AnularCarga()).

b. En caso de que no haya código de contenido que cargar,
entonces entiende que quiere el listado completo y lo carga.
(si no hay listado posible => false).

8. Comprueba el resultado:
a. Si el contenido devuelto no tiene el mismo código que el

pedido, algún error ha habido y lo vacía.
b. Si no había ninguna sección, pero el contenido tenia una

predefinida, carga la sección del contenido.
c. Si la Web que pide la sección no tiene acceso a ella, la vacía.
d. Si no hay contenido pero la sección si tiene alguno asociado,

carga en el contenido el primer contenido de la sección.
e. Si hay un contenido cargado y tiene Meta-Tags propios, hay

que cambiar los de la sección por los suyos.
f. Si hay un contenido cargado y tiene menús, los agrega a los

de la sección.
9. Si existe la función de post-proceso (debería estar en el archivo de

procesos de la plantilla), la ejecuta.
10. Devolverá true.

function Desconectar ();
Entrada --ninguna--
Salida --ninguna--
Funcionamiento 1. Realiza el registro estadístico de la Web.

2. Elimina la conexión con la base de datos.

function CargarMigas ();
Entrada --ninguna--
Salida --ninguna-- carga los datos en la variable “Migas”.
Funcionamiento 1. Recoge los datos de la petición de la Web.

2. Introduce $_GET en su campo dentro de las “Migas”.
3. Introduce $_POST en su campo dentro de las “Migas”.
4. Si no hay idioma especificado, coge el idioma por defecto de la Web.
5. Si el idioma no es el mismo que en la petición anterior, y no hay más

datos en la petición de la Web, carga los datos de la copia anterior
para poder enseñarlos en el nuevo idioma seleccionado.

6. Sino, carga el código de la sección y del contenido en sus campos
dentro de las “Migas”.

function AnularCarga();
Entrada --ninguna--
Salida Los datos del contenido definido para notificar que no se tiene permiso.
Funcionamiento 1. Cargar los datos del contenido.

2. Anula la carga de datos que se haya hecho en las “Migas”:
a. Tipo de contenido = CONTENIDO.
b. Accion = “”.
c. Sección = La sección predeterminada del contenido.

API del MerkaWeb® 20070118-rev.0

 Página 5 de 32

2.3. Funciones para el Usuario:

Son funciones preparadas para facilitar la programación de las funciones de procesado de las
plantillas.

Además de estas funciones, existen las del resto de clases instanciadas desde el principio en la API.
Mencionadas en el apartado previo de variables.

function GetData…();Idioma, Seccion, Contenido, Tipo, Accion, Orden, Get, Post
Entrada --ninguna--
Salida El dato que quieren consultar de las “Migas”.
Funcionamiento El proceso inverso que la función siguiente.

1. Coge de la variable “Migas”, el dato que quiera consultar.
a. Las primeras son las de la petición de la Web.
b. Get y Post son las de $_GET y $_POST respectivamente.

function SetData…($dato);Idioma, Seccion, Contenido, Tipo, Accion, Orden, Get, Post
Entrada $dato es el dato que introducir en la variable “Migas”.
Salida --ninguna--
Funcionamiento El proceso inverso que la función anterior.

1. Introduce en la variable “Migas”, el dato que quiera cambiar.

function GetIdioma ();
Entrada --ninguna--
Salida Idioma en el que se está viendo la Web.

Formato: nombre y abreviatura.
Funcionamiento --

function GetIdiomas ();
Entrada --ninguna--
Salida Listado de idiomas disponibles para ver la Web.

Formato: (número, 1=>(nombre y abreviatura), 2=>…, …)
Funcionamiento --

function SetIdioma ($Patron);
Entrada $Patron es el nombre o abreviatura del idioma que queremos cargar.
Salida true/false si lo ha encontrado o no.
Funcionamiento --

function Traducir ($Palabra);
Entrada $Palabra es el termino a buscar en el diccionario.
Salida El equivalente del término en el idioma en que se está viendo la Web.
Funcionamiento --

function Migas();
Entrada --
Salida La variable de las “Migas”.
Funcionamiento --

function GetDoc ($Patron);
Entrada $Patron es el código del documento o nombre del mismo.
Salida Documento debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

API del MerkaWeb® 20070118-rev.0

 Página 6 de 32

function GetAlbum ($Patron);
Entrada $Patron es el código del album o nombre del mismo.
Salida Album debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function GetMenu ($Patron, $Hijos=true);
Entrada $Patron es el código del menú o nombre del mismo.

$Hijos indica si queremos que cargue también los enlaces, o no.
Salida Menú debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function GetContenido ($Patron, $Hijos=true);
Entrada $Patron es el código del contenido o nombre del mismo.

$Hijos indica si queremos que cargue también todos los datos relacionados
con el contenido (otros contenidos, documentos y menús).

Salida Contenido debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function GetContenidosCriterio($Patron, $Orden, $Pagina, $RPP);
Entrada $Patron es el texto por el que queremos buscar los contenidos. Usado para

generar la consulta que lo compara con el nombre y el resto de campos por
idioma.
$Orden es el campo por el que queremos ordenar el resultado.
$Pagina es la página que queremos mostrar.
$RPP son los registros por página que queremos mostrar.

Salida Un listado de los contenidos encontrados y debidamente formateados.
Formato: (número, 1=>contenido(sin contenidos relacionados), 2=>…, …)

Funcionamiento 1. Construye el filtro de búsqueda para aplicar el patrón al nombre y al
título, resumen y texto por idioma.

2. Manda la petición a la clase de búsqueda “Find”.

function GetSeccion ($Patron, $Hijos=true);
Entrada $Patron es el código de la sección o nombre del mismo.

$Hijos indica si queremos que cargue también todos los datos relacionados
con la sección (menús, contenidos y metas).

Salida Sección debidamente formateada.
Funcionamiento 1. Manda la petición a la clase de búsqueda “Find”.

2. Le añade el listado de Canales RSS que tenga la Web.

function GetBoletin ($Patron, $Hijos=true, $Publico=-1);
Entrada $Patron es el código del boletín o el nombre del mismo.

$Hijos indica si queremos que cargue también todos los datos relacionados
con el boletín (menús y contenidos).
$Publico indica si queremos buscar entre todos los boletines (-1), solo los
públicos (1) o solo los privados (0).

Salida Boletín debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function GetBoletinesCriterio ($Patron, $Orden, $Publico=-1);
Entrada $Patron es texto por el que queremos buscar los boletines. Usado para

generar la consulta al agregarlo como sentencia “WHERE”.
$Orden es el campo por el que queremos ordenarlo.
$Publico indica si queremos buscar entre todos los boletines (-1), solo los
públicos (1) o solo los privados (0).

API del MerkaWeb® 20070118-rev.0

 Página 7 de 32

Salida Listado de los boletines encontrados y debidamente formateados.
Formato: (número, 1=>boletín (sin contenidos relacionados), 2=>…, …)

Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function RegistrarBoletin ($email, $nombre, $idioma="", $grupo="") ;
Entrada $email y $nombre son los datos que quiere el visitante registrar en el

boletín de la Web.
$idioma, si no se indica lo contrario, cogerá en el que se está viendo la Web.
$grupo, además del definido en la Web, puede apuntarse a alguno más.

Salida true/false si ha conseguido registrarlo, o no por que no ha pasado
suficientes datos, por que ya estaba registrado o se ha producido un error al
realizar el registro en la base de datos

Funcionamiento Manda la petición a la clase de usuario “usuario”.

function SetUsuario($email, $clave);
Entrada $email y $clave son los datos para identificar al usuario.
Salida true/false si es un usuario registrado y puede identificarse en la Web.
Funcionamiento Manda la petición a la clase de usuarios “Usuario”.

function GetUsuario();
Entrada --ninguna--
Salida Datos del usuario debidamente formateados.
Funcionamiento Manda la petición a la clase de usuarios “Usuario”.

function ActualizarUsuario ($datos) ;
Entrada $datos es un vector con los datos del usuario formateado como el resultado

de la función “FormatUsuario”.
Salida true/false si ha conseguido actualizarlo, o no por que no hay usuario

identificado o se ha producido un error al realizar el registro en la base de
datos

Funcionamiento Manda la petición a la clase de usuario “usuario”.

function RegistrarUsuario ($datos) ;
Entrada $datos es un vector con los datos del usuario formateado como el resultado

de la función “FormatUsuario”.
Salida true/false si ha conseguido actualizarlo, o no por que ya hay un usuario

registrado con esa identificación, o se ha producido un error al realizar el
registro en la base de datos

Funcionamiento Manda la petición a la clase de usuario “usuario”.

function GetCanal ($Patron, $Hijos=true);
Entrada $Patron es el código del canal o el nombre del mismo.

$Hijos indica si queremos que cargue todos los datos relacionados con el
canal (contenidos del canal).

Salida Canal debidamente formateado.
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

function GetCanales();
Entrada --ninguna--
Salida Listado de los canales encontrados y debidamente formateados.

Formato: (número, 1=>canal (sin contenidos relacionados), 2=>…, …)
Funcionamiento Manda la petición a la clase de búsqueda “Find”.

API del MerkaWeb® 20070118-rev.0

 Página 8 de 32

function RegistroEstadistico($campos=array());
Entrada $campos que se quieran añadir al registro estadístico de la Web.

Formato: Array (“campo1” =>
Array("campo"=>"estIdioma","dato"=>$this->Idiomas-
>Idioma[CAMPO_NOMBRE],"type"=>"char")
“campo2” => …)

Salida --ninguno--
Funcionamiento 1. Fuerza el envío de código que haya pendiente para el navegador.

2. Prepara la sentencia SQL para registrar todos los datos de la página
que se está mostrando.

3. Ejecuta la sentencia en la base de datos.

function GoogleAnalitics();
Entrada --ninguna-- (usa el código para google analictics definido en la Website)
Salida --ninguna-- (hace una salida por pantalla)
Funcionamiento 1. Fuerza el envío de código que haya pendiente para el navegador.

2. Envía a pantalla el código para unir la página Web a Google-Analitics.

function EnviarEmail ($from, $fromname, $to, $toname, $contenido, $datos);
Entrada $from y $fromname son los datos del que quiere enviar el email.

$to y $toname son los datos del que va ha recibir el email.
$contenido es un contenido del que se coge el texto como plantilla a usar.
$datos son los datos que emplear con la plantilla.

Salida true/false si ha conseguido enviar el email, o no.
Funcionamiento 1. Abre la plantilla pasándole el texto del contenido, e indicando que es

un email, y pasándole los datos recibidos.
2. Procesa la plantilla y obtiene el resultado.
3. Cambia las direcciones de los archivos para que tengan el camino

completo.
4. Instancia la clase MKWEmail con los datos que tenemos.
5. Envía el correo.
6. Devuelve si ha podido enviarlo.

function Template($conSeccion=true);
Entrada $conSeccion indica que evaluamos la plantilla incluyendo la sección, o solo

el contenido.
Salida Resultado de la plantilla (código HTML).
Funcionamiento 1. Si es un documento o elemento multimedia el que tiene que cargar:

a. Genera los encabezados adecuados (HEADER).
b. Si está en el disco carga su contenido en una variable.
c. Sino, lo coge de la base de datos.
d. Devuelve como resultado el contenido del documento.

2. Sino,
a. Abre la plantilla con los datos de la API (sección, contenido y

tipo).
b. Procesa la plantilla y coge el resultado.
c. Cambia las direcciones de los archivos para que tengan el

camino completo.
3. Devuelve el resultado.

function HtmlBoletin($boletin);
Entrada $boletin puede ser el boltín ya formateado, o el código o nombre para

buscar sus datos (con contenidos relacionados).
Salida Resultado de la plantilla (código HTML).
Funcionamiento 1. Carga los datos del boletín si no estaban ya cargados.

API del MerkaWeb® 20070118-rev.0

 Página 9 de 32

2. Los datos del boletín son el contenido, y los datos de la sección se
buscan con el código de la sección para boletines definida en la
Website.

3. Abre la plantilla con estos datos y los procesa.
4. Cambia las direcciones de los archivos para que tengan el camino

completo.
5. Devuelve el resultado.

function ProcessCode($datos, $code, $archivo=””);
Entrada $datos que se quieren pasar a la plantilla para procesarla.

$code es el código que se quiere usar como plantilla.
$archivo es el archivo que contiene la plantilla que se quiere usar como
plantilla.

Salida Resultado de la plantilla (código HTML).
Funcionamiento 1. Instancia una variable de la clase “MKWTemaplate”.

2. Carga los datos de la Website y parámetros generales.
3. Abre la plantilla pasándole como parámetros:

a. Datos de la sección nula (array()).
b. Contenido de tipo CONTENIDO_CONTENIDO_CONTENIDO.
c. Datos ($datos) del contenido.
d. Sin HTML para la sección.
e. Con código Html ($code) que procesar para el contenido.
f. Sin nombre de plantilla específica para la sección.
g. Con el nombre de la plantilla ($archivo) para el contenido

proporcionado por parámetro.
4. Procesa la plantilla (sin sección) y coge el resultado.
5. Libera la variable instanciada.
6. Devuelve el resultado.

API del MerkaWeb® 20070118-rev.0

 Página 10 de 32

3. Clase MKWIdiomas.

Es una clase de uso interno para la clase “MKWConn” que la instancia y que ya proporciona
funciones de acceso para el Usuario.

No es necesario que el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” recurra a esta clase.

3.1. Variables:

$Idiomas listado de los idiomas.
$Idioma idioma en el que se está viendo la Web.
$Conn conexión directa con la base de datos.

3.2. Funcione:

function MKWIdiomas ();
Entrada --ninguna--
Salida Instancia de la clase
Funcionamiento 1. Inicializa las variables a sus valores por defecto (es-español)

function Cargar ($Conn);
Entrada $Conn es el enlace a la base de datos
Salida true/false si ha conseguido cargar los idiomas, o no.
Funcionamiento 1. Busca en la base de datos los idiomas.

2. Los carga en su variable local “Idiomas” con el formato:
 Idiomas[abreviatura] = nombre_idioma

function GetIdioma ();
Entrada --ninguna--
Salida Idioma en curso debidamente formateado (abreviatura, nombre)
Funcionamiento --

function GetIdiomas ();
Entrada --ninguna--
Salida Listado de idiomas “Idiomas”.
Funcionamiento --

function SetIdioma($Patron);
Entrada $Patron es el idioma por nombre o por abreviatura.
Salida true/false si ha encontrado el idioma, o no.
Funcionamiento 1. Busca el idioma en su lista.

2. Si lo encuentra lo carga en la variable “Idioma”.

function GetTraduccion($Palabra, $Idioma="");
Entrada $Palabra es el término que hay que buscar en la tabla del diccionario.

$Idioma es para poder especificar un idioma distinto del que se está usando
en la Web.

Salida El término en el idioma seleccionado, o una cadena vacía si no se ha
encontrado.

Funcionamiento --

API del MerkaWeb® 20070118-rev.0

 Página 11 de 32

4. Clase MKWFind.

Es una clase de uso interno para la clase “MKWConn” que la instancia y que ya proporciona
funciones de acceso para el Usuario.

No es necesario que el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” recurra a esta clase.

4.1. Variables:

$Idioma idioma en el que se está viendo la Web.
$Conn conexión directa con la base de datos.

4.2. Funciones:

function MKWFind ();
Entrada --ninguna--
Salida Instancia de la clase
Funcionamiento 1. Inicializa las variables a cadena vacía.

function Cargar ($Conn, $Idioma);
Entrada $Conn es el enlace con la base de datos.

$Idioma es el idioma en el que se está mostrando la Web.
Salida --ninguna--
Funcionamiento 1. Asigna los valores de los parámetros a sus variables.

function FindDoc($Patron);
Entrada $Patron puede ser el código o el nombre del documento.
Salida Datos del documento debidamente formateado.
Funcionamiento 1. Busca el registro y pide a la función “FormatDoc” que lo formatee.

function FindAlbum ($Patron);
Entrada $Patron puede ser el código o el nombre del álbum.
Salida Listado de documentos debidamente formateados.

Formato: (número, 1=>(documento), 2=>…, …)
Funcionamiento 1. Busca los documentos asociados al álbum.

2. Los introduce en el listado que será devuelto.

function EscogerBanner($enlaces);
Entrada $enlace es un listado de enlaces, entre los que habrá que escoger un enlace

de forma aleatoria pero teniendo en cuenta sus pesos.
Salida Enlace escogido.
Funcionamiento

function FindMenu($Patron, $Hijos=true);
Entrada $Patron es el código o el nombre del menú.

$Hijos indica si queremos que cargue todos los datos relacionados con el
menú (submenús).

Salida Menú debidamente formateado.
Funcionamiento 1. Busca el registro y pide a la función “FormatMenu” que lo formatee.

2. Si tiene que cargar también los datos relacionados:
a. Llama a “FindSubMenu” indicando que él es el patrón y que el

API del MerkaWeb® 20070118-rev.0

 Página 12 de 32

padre es 0, para obtener los enlaces.
b. Pero si es un menú de banners, llama a “EscogerBanner” para

que seleccione 1 de entre sus enlaces.
c. El o Los enlaces, se agregan al menú en el campo

“CAMPO_ENLACES”.

function FindSubMenu ($Patron, $Padre);
Entrada $Patron es el código o nombre del menú.

$Padre es el código del submenú del que cuelga en la estructura de árbol. 0
para los que cuelgan directamente del menú.

Salida Listado de enlaces debidamente formateados:
Formato: (número,
 1=>(datos del enlace+CAMPO_ENLACES=>(número, …)),
 2=>…)

Funcionamiento 1. Busca los enlaces según el patrón para el menú y el padre para ver el
nivel desde el que hay que buscar.

2. Los introduce en una lista cada enlace debidamente formateado por
“FormatSubMenu”.

3. Comprueba si a su vez puede tener enlaces que penden de él y los
mete en el campo CAMPO_ENLACES.

function FindContenido… ($Patron); Contenidos, Documentos y Menus
Entrada $Patron es el código del contenido del que hay que buscar los contenidos,

documentos o menús relacionados.
Salida Listado de contenidos, documentos o menús, debidamente formateados.
Funcionamiento 1. Busca los elementos relacionados con el contenido.

2. Los introduce en una lista.
3. Devuelve la lista.

function FindContenido($Patron, $Hijos=true);
Entrada $Patron es el código o el nombre del contenido.

$Hijos indica si queremos que cargue todos los datos relacionados con el
contenido (contenidos, documentos y menús).

Salida Contenido debidamente formateado.
Funcionamiento 1. Busca los datos del contenido y los formatea con “FormatContenido”.

2. En caso de que tenga que cargar los datos relacionados, llamará a
las funciones anteriormente descritas y agregará el resultado en los
campos:

a. CAMPO_CONTENIDOS.
b. CAMPO_DOCS.
c. CAMPO_MENUS.

function FindContenidosCriterio($Patron, $Orden, $Pagina, $RPP);
Entrada $Patron es la sentencia para agregar al “Where”.

$Orden es el campo por el que queremos ordenar el resultado.
$Pagina es la página que queremos mostrar.
$RPP son los registros por página que queremos mostrar.

Salida Un listado de los contenidos encontrados y debidamente formateados.
Formato: (número, 1=>contenido(sin contenidos relacionados), 2=>…, …)

Funcionamiento 1. Realiza la consulta según el patrón y genera un listado con los
resultados.

2. Además guarda con el listado otros valores en los campos:
a. CAMPO_TOTAL, con el número de registros de la consulta.
b. CAMPO_PAGINAS, número de páginas del resultado.
c. CAMPO_PAGINA, página que se está devolviendo.

API del MerkaWeb® 20070118-rev.0

 Página 13 de 32

function FindSeccion… ($Patron); Contenidos y Menus
Entrada $Patron es el código de la sección del que hay que buscar los contenidos o

menús relacionados.
Salida Listado de contenidos o menús, debidamente formateados.
Funcionamiento 1. Busca los elementos relacionados con el contenido.

2. Los introduce en una lista.
3. Devuelve la lista.

function FindSeccion($Patron, $Hijos=true);
Entrada $Patron es el código o el nombre del menú.

$Hijos indica si queremos que cargue todos los datos relacionados con la
sección (contenidos, menús y meta-tags).

Salida Sección debidamente formateada.
Funcionamiento 1. Busca los datos del contenido y los formatea con “FormatSeccion”.

2. En caso de que tenga que cargar los datos relacionados, llamará a
las funciones anteriormente descritas y agregará el resultado en los
campos:

a. CAMPO_CONTENIDOS.
b. CAMPO_MENUS.
c. CAMPO_METAS.

function FindBoletin… ($Patron); Contenidos y Menus
Entrada $Patron es el código del boletín del que hay que buscar los contenidos o

menús relacionados.
Salida Listado de contenidos o menús, debidamente formateados.
Funcionamiento 1. Busca los elementos relacionados con el contenido.

2. Los introduce en una lista.
3. Devuelve la lista.

function FindBoletin($Patron, $Hijos=true, $Publico=-1);
Entrada $Patron es el código o el nombre del boletín.

$Hijos indica si queremos que cargue todos los datos relacionados con el
contenido (contenidos y menús).
$Publico indica si queremos limitarnos a los públicos (1), a los privados (0),
o a todos (-1).

Salida Boletín debidamente formateado.
Funcionamiento 1. Busca los datos del contenido y los formatea con “FormatBoletin”.

2. En caso de que tenga que cargar los datos relacionados, llamará a
las funciones anteriormente descritas y agregará el resultado en los
campos:

a. CAMPO_CONTENIDOS.
b. CAMPO_MENUS.

function FindBoletinesCriterio($Patron, $Orden, $Publico=-1
Entrada $Patron es la sentencia para agregar al “Where”.

$Orden es el campo por el que queremos ordenar el resultado.
$Publico indica si queremos limitarnos a los públicos (1), a los privados (0),
o a todos (-1).

Salida Un listado de los boletines encontrados y debidamente formateados.
Formato: (número, 1=>boletín(sin contenidos relacionados), 2=>…, …)

Funcionamiento 1. Realiza la consulta según el patrón y genera un listado.

function FindMetas($Patron);
Entrada $Patron es el código del grupo de meta-tags que se quiere buscar.
Salida Un listado de los met-tags encontrados y debidamente formateados.

API del MerkaWeb® 20070118-rev.0

 Página 14 de 32

Formato: (número, 1=>meta-tag(debidamente formateado), 2=>…, …)
Funcionamiento 1. Busca los datos del los meta-tags del grupo y los formatea con

“FormatMeta”.

function FindCanalContenidos ($Patron);
Entrada $Patron es el código del canal del que se quieren buscar contenidos

relacionados a él.
Salida Un listado de los contenidos encontrados y debidamente formateados.

Formato: (número, 1=>contenido(sin contenidos relacionados), 2=>…, …)
Funcionamiento 1. Busca los datos del los contenidos asociados al canal y los formatea

con “FormatContenido” y sin contenidos relacionados.

function FindCanal($Patron, $Hijos=false);
Entrada $Patron es el código o el nombre del canal.

$Hijos indica si queremos que cargue todos los datos relacionados con el
contenido (contenidos).

Salida Canal debidamente formateado
Funcionamiento 1. Busca los datos del canal y los formatea con “FormatCanal”.

2. En caso de que tenga que cargar los datos relacionados, llamará a la
funciones anteriormente descrita y agregará el resultado en el
campo:

a. CAMPO_ENLACES.

function FindCanales ($filtro);
Entrada $filtro es el patrón por el que buscar los canales por nombre que empieze

por él.
Salida Un listado de los canales encontrados y debidamente formateados.

Formato: (número, 1=>canal(sin contenidos relacionados), 2=>…, …)
Funcionamiento 1. Busca los datos del los canales cuyo nombre empieze por el filtro, y

acoge los datos que le de la función anteriormente descrita, pero sin
contenidos relacionados.

API del MerkaWeb® 20070118-rev.0

 Página 15 de 32

5. Clase MKWUsuario.

Es una clase de uso interno para la clase “MKWConn” que la instancia y que ya proporciona
funciones de acceso para el Usuario.

No es necesario que el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” recurra a esta clase.

3.1. Variables:

$Conn conexión directa con la base de datos.
$ctrlseccion firma de la Website que guardar con el usuario al registrarlo.
$perfil perfil de acceso configurado en la Website para los usuarios.
$Usuario datos debidamente formateados del usuario identificado.

3.2. Funciones:

function MKWUsuario ();
Entrada --ninguna--
Salida Instancia de la clase
Funcionamiento 1. Inicia las variables a sus valores nulos.

function Cargar ($Conn, $ctrlseccion, $perfil);
Entrada $Conn es el enlace con la base de datos.

$ctrlseccion es la firma del Website a registrar en los usuarios.
$perfil es el código del perfil que asignar a los usuarios registrados.

Salida --ninguna--
Funcionamiento 1. Asigna los parámetros a sus variables.

2. Llama a “SetCliente”, pasandole los datos guardados en la sesión.
Por si se ha identificado ya un cliente.

function SetCliente ($email="", $pass="") ;
Entrada $email y $pass son los datos de los usuarios para identificarse.
Salida true/false si ha encontrado el usuario y se ha identificado, o no.
Funcionamiento 1. Si no hay datos suficientes, devuelve false.

2. Si no encuentra en la base de datos el usuario, devuelve false.
3. Sino.

a. Guarda los datos del usuario formateados por
“FormatUsuario” en su variable.

b. Guarda sus datos en la sesión para que en la siguiente carga
pueda volver a identificarse automáticamente.

c. Carga sus permisos sobre los contenidos y documentos
privados.

function ActualizarUsuario ($datos);
Entrada $datos son los datos de un usuario, formateados igual que por

“FormatUsuario”.
Salida true/false si ha podido guardar sus datos, o no.
Funcionamiento 1. Genera la sentencia SQL para actualizar los datos del usuario

cargado.
2. Ejecuta la sentencia SQL.
3. Llama a “SetCliente”, para ver si ha guardado el registro y puede

identificarse.

API del MerkaWeb® 20070118-rev.0

 Página 16 de 32

function RegistrarUsuario ($datos);
Entrada $datos son los datos de un usuario, formateados igual que por

“FormatUsuario”.
Salida true/false si ha podido guardar sus datos, o no.
Funcionamiento 1. Genera la sentencia SQL para insertar un nuevo usuario con los

datos.
2. Ejecuta la sentencia SQL.
3. Llama a “SetCliente”, para ver si ha guardado el registro y puede

identificarse.

function Permiso ($Tipo, $Id);
Entrada $Tipo es el tipo de contenido privado que quiere comprobar (contenido o

documento).
$Id es el código de dicho contenido.

Salida true/false si tiene permiso, o no.
Funcionamiento 1. Comprueba si tiene permiso en los accesos que tiene por perfil.

2. Si no los tiene, lo comprueba en los que tiene personalizados.
3. Devuelve si lo ha encontrado o no.

function RegistrarBoletin ($email, $nombre, $idioma, $grupo, $ctrlseccion);
Entrada $email del usuario a registrar.

$nombre con el que quiere identificarse.
$idioma en el que quiere recibir el boletín.
$grupo de usuarios al que apuntarle.
$ctrlsección es la website a la que hay que asociarlo.

Salida true/false si ha podido guardar sus datos, o no por que ya existe o por que
se ha producido un error al intentar registrarlo en la base de datos.

Funcionamiento 1. Busca ya un usuario con ese email en esa Web.
2. Si existe sale devolviendo false.
3. Si no se define un idioma, coge el de la Web.
4. Registra el usuario en la Web.
5. Si hay un grupo especificado, lo asocia a ese grupo de usuarios de

boletín.

API del MerkaWeb® 20070118-rev.0

 Página 17 de 32

6. Clase MKWMail.

Es una clase de uso interno para la clase “MKWConn” que la instancia y que ya proporciona
funciones de acceso para el Usuario.

Aún así, si el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” quiere preparar una aplicación de envío de emails, puede instancias en una
variable local a su función esta clase, y emplear sus funciones como se describen en este apartado.

6.1. Variables:

$from email del que envía.
$fromname nombre o identificación del que envía.
$tolst listado de destinatarios del email.
$contenido contenido que enviar por el email.

6.2. Funciones:

function MKWMail ($from="",$fromname="",$to="",$toname="",$contenido=array());
Entrada Los datos de las variables de la clase
Salida Instancia de la clase.
Funcionamiento 1. Guarda los parámetros en las variables.

2. Agrega $to y $toname a la lista de destinatarios, si es que se han
introducido como parámetros.

function Agregar($to, $toname);
Entrada $to y $toname son el email y el nombre del destinatario que agregar a la

lista.
Salida --ninguna--
Funcionamiento --

function Enviar ($to="", $toname="", $contenido=array());
Entrada $to y $toname son el email y el nombre del destinatario que agregar a la

lista.
$contenido es el contenido que enviar por el email.

Salida true/false si ha podido enviar el email a todos, o no.
Funcionamiento 1. Por cada uno de los destinatarios del email, lo envia y comprueba el

error.
2. Devuelve si ha podido enviar todos.

API del MerkaWeb® 20070118-rev.0

 Página 18 de 32

7. Clase MKWTemplate.

Es una clase de uso interno para la clase “MKWConn” que la instancia y que ya proporciona
funciones de acceso para el Usuario.

No es necesario que el usuario que programe las funciones de “template_preprocess” y
“template_posprocess” recurra a esta clase. Pero puede consultarla para entender mejor el
funcionamiento de la programación de las plantillas y su resultado en la Web.

7.1. Variables:

Variables configuradas por parámetros a través de alguna función:

$MKW enlace a la clase principal de la API (MKWConn).
$idiomas clase con la gestión de idiomas (MKWIdiomas).

 $idioma abreviatura del idioma en el que se quiere mostrar la Web.
 $ctrlseccion firma de la Website.

$path dirección donde se encuentran las plantillas de la Website.
$datos datos iniciales para la plantilla (sección + contenido).
$ctipo tipo de contenido.
$htmlIniSeccion html para la sección, en lugar de que coja de una plantilla.
$htmlIniContenido html para el contenido, en lugar de que coja de una plantilla.
$temSecc plantilla para la sección, en lugar de que coja de la lista.
$temCon plantilla para el contenido, en lugar de que coja de la lista.

Variables usadas a nivel interno:

$is_listado comprobación de si el contenido es un listado de contenidos.
$plantillas nombres de las plantillas para los contenidos o listados.
$s_estilo estilo de la sección.
$c_estilo estilo del contenido.
$estilo estilo de lo que se está procesando (sección o contenido).
$archivo archivo que se ha cargado para ser procesado.
$strResultado variable donde se guarda el resultado del proceso.
$indBloqueId en un bloque a repetir por elemento, es el número que lleva.
$indBloqueLim en un bloque a repetir por elemento, es el límite.
$variables es el vector donde se guardan las variables globales.

7.2. Funciones:

function MKWTemplate ($MKW);
Entrada $MKW es el enlace a la clase primaria de la API “MKWConn”.
Salida Instancia de la clase.
Funcionamiento 1. Inicia las variables a sus valores nulos.

2. Menos la del parámetro, que la asigna a su variable local.

function Datos ($path, $ctrlseccion, $idiomas);
Entrada $path es la dirección configurada en el Website, donde buscar las plantillas.

$ctrlseccion es la firma del Website.
$idiomas es la clase de gestión de idiomas “MKWIdiomas”.

Salida -ninguna--
Funcionamiento 1. Carga los parámetros en las variables locales.

API del MerkaWeb® 20070118-rev.0

 Página 19 de 32

2. Coge de ellas el idioma en el que se está mostrando la Web.

function Open ($seccion, $ctipo, $contenido, $htmlIniSeccion="",

$htmlIniContenido="", $temSecc="", $temCon="");
Entrada $sección y $contenido son los datos que usar en la plantilla

$ctipo indica el tipo de contenido que es.
$htmlIniSeccion y $htmlIniContenido son el código html para la sección y el
contenido si no queremos que lo cargue desde un archivo.
$temSecc y $temCon son el nombre de las plantillas que queremos que use
en lugar del correspondiente de la lista de plantillas.

Salida --ninguna-- (inicializa variables de la clase)
Funcionamiento 1. Carga los estilo de la sección y del contenido.

2. Carga los datos de la sección en la variable de datos.
 $datos = $seccion;
 $datos[CAMPO_CONTENIDO_HTML] = (se guardaré el
 resultado del procesado del contenido);
3. Si el contenido es un listado:

a. Se cargan las plantillas para listados.
b. Y el contenido como un conjunto de enlaces de la sección:

 $datos[CAMPO_CONTENIDO][CAMPO_ENLACES] = $contenido;

c. E indica en la variable local que es un listado.
4. En caso de que no lo sea:

a. Se cargan las plantillas para contenidos.
b. Y el contenido como un contenido normarl:

 $datos[CAMPO_CONTENIDO] = $contenido;

5. Carga el resto de parámetros en sus variables.
6. Si el tipo de contenido era una acción o no está definido, lo redefine

a tipo CONTENIDO.

function Process($conSeccion);
Entrada $conSeccion indica si queremos que procese también la sección o solo el

contenido.
Salida true/false si ha podido realizar el procesado, o no.
Funcionamiento 1. Si no hay un código que procesar para la sección ($htmlIniSeccion),

y no hay plantilla definida ($temSec), escoge una de la lista.
2. Igualmente hace con el contenido.
3. Si es un boletín

a. Procesa el contenido de los datos como un boletín, y los
guarda en la variable de resultado ($strResultado).

4. Sino
a. Si hay contenido, lo procesa y el resultado lo guarda para que

pueda ser usado en la sección en el campo:

 $datos[CAMPO_CONTENIDO_HTML] = $contenido;

b. Si no ha habido ningún error

i. Si hay que procesar la sección, la procesa y guarda en
la variable de resultado ($strResultado) el resultado.

ii. Sino, guarda en la variable de resultado el resultado
del contenido.

5. Devuelve si ha no habido ningún error.

API del MerkaWeb® 20070118-rev.0

 Página 20 de 32

function HayError();
Entrada --
Salida true/false si se ha dado un error, o no.
Funcionamiento --

function ErrorMsg();
Entrada --ninguna--
Salida Texto registrado del error
Funcionamiento --

function ErrorTxt();
Entrada --ninguna--
Salida Texto ya formateado del error:

Formato: [MKWTemplate] [f: archivo] [msg: texto]
Funcionamiento --

function ErrorFile();
Entrada --ninguna--
Salida El archivo que se está examinando cuando se ha producido el error.
Funcionamiento --

API del MerkaWeb® 20070118-rev.0

 Página 21 de 32

8. Referencias.

8.1. Clase MKWConn:

var
 $Conn, $Idiomas, $Idioma,
 $Migas, $Find, $Template,
 $Usuario,
 $name_plantilla, $ctrlseccion, $SecDef,
 $grupo_boletin, $sec_boletin, $boletin_email, $boletin_entidad, $idioma_defecto,
 $googlecode, $id_plantilla, $url_web, $con_sinpermiso, $perfilusuarios;

function MKWConn ();

function Conectar ($urlIndex) ;

function Desconectar();

function CargarMigas();

function AnularCarga();

function GetDataIdioma() ;
function GetDataAccion();
function GetDataSeccion();
function GetDataContenido();
function GetDataTipo();
function GetDataOrden();
function GetDataGet();
function GetDataPost();

function SetDataIdioma($dato);
function SetDataAccion($dato);
function SetDataSeccion($dato);
function SetDataContenido($dato);
function SetDataTipo($dato);
function SetDataOrden($dato);
function SetDataGet($dato);
function SetDataPost($dato);

function GetIdioma ();
function GetIdiomas ();
function SetIdioma ($Patron);
function Traducir ($Palabra);

function Migas() ;

function GetDoc ($Patron);
function GetAlbum ($Patron);
function GetMenu ($Patron, $Hijos=true);
function GetContenido ($Patron, $Hijos=true);
function GetContenidosCriterio($Patron, $Orden, $Pagina, $RPP);
function GetSeccion ($Patron, $Hijos=true);
function GetBoletin ($Patron, $Hijos=true, $Publico=-1);
function GetBoletinesCriterio ($Patron, $Orden, $Publico=-1);

API del MerkaWeb® 20070118-rev.0

 Página 22 de 32

function RegistrarBoletin ($email, $nombre, $idioma="", $grupo="") ;
function SetUsuario($email, $clave);
function GetUsuario();
function ActualizarUsuario ($datos) ;
function RegistrarUsuario ($datos) ;

function GetCanal ($Patron, $Hijos=true);
function GetCanales();

function RegistroEstadistico($campos=array());

function GoogleAnalitics();

function EnviarEmail ($from, $fromname, $to, $toname, $contenido, $datos);

function Template($conSeccion=true);

function HtmlBoletin($boletin);

function ProcessCode($datos, $code, $archivo="");

8.2. Clase MKWIdiomas:

var
 $Conn, $Idioma, $Idiomas;

function MKWIdiomas ();
function Cargar($Conn);
function GetIdioma ();
function GetIdiomas ();
function SetIdioma($Patron);
function GetTraduccion($Palabra, $Idioma="");

8.3. Clase MKWFind:

var

$Conn, $Idioma;

function MKWFind ();

function Cargar ($Conn, $Idioma);

function FindDoc($Patron);
function FindAlbum ($Patron);

function EscogerBanner($enlaces);
function FindMenu($Patron, $Hijos=true);
function FindSubMenu ($Patron, $Padre);

function FindContenidoContenidos ($Patron);
function FindContenidoDocumentos ($Patron);
function FindContenidoMenus ($Patron);
function FindContenido($Patron, $Hijos=true);
function FindContenidosCriterio($Patron, $Orden, $Pagina, $RPP);

API del MerkaWeb® 20070118-rev.0

 Página 23 de 32

function FindSeccionContenidos ($Patron);
function FindSeccionMenus ($Patron);
function FindSeccion($Patron, $Hijos=true);

function FindBoletinContenidos ($Patron);
function FindBoletinMenus ($Patron);
function FindBoletin($Patron, $Hijos=true, $Publico=-1);
function FindBoletinesCriterio($Patron, $Orden, $Publico=-1);

function FindMetas($Patron);

function FindCanalContenidos ($Patron);
function FindCanal($Patron, $Hijos=false);
function FindCanales ($filtro);

8.4. Clase MKWUsuario:

var
 $Conn, $Usuario, $Permisos,
 $ctrlseccion, $perfil;

function MKWUsuario ();

function Cargar ($Conn, $ctrlseccion, $perfil);

function SetCliente ($email="", $pass="");

function ActualizarUsuario ($datos) ;

function RegistrarUsuario ($datos) ;

function Permiso($Tipo, $Id);

function RegistrarBoletin ($email, $nombre, $idioma, $grupo, $ctrlseccion);

8.5. Clase MKWMail:

var

$from, $fromname,
 $tolst, $contenido;

function MKWMail ($from="", $fromname="", $to="", $toname="", $contenido=array());

function Agregar($to, $toname);

function Enviar ($to="", $toname="", $contenido=array());

8.6. Clase MKWTemplate:

var
 $MKW, $idiomas, $idioma, $ctrlseccion, $is_listado, $plantillas, $s_estilo, $c_estilo, $estilo;

$datos, $path, $ctipo, $archivo, $Error, $strResultado;
$indBloqueId, $indBloqueLim, $variables;

API del MerkaWeb® 20070118-rev.0

 Página 24 de 32

$htmlIniSeccion, $htmlIniContenido, $temCon, $temSecc;

function MKWTemplate ($MKW);

function Datos ($path, $ctrlseccion, $idiomas);

function Open ($seccion, $ctipo, $contenido, $htmlIniSeccion="", $htmlIniContenido="",

$temSecc="", $temCon="");

function Process($conSeccion);

function HayError();
function ErrorMsg();
function ErrorTxt();
function ErrorFile();

8.7. APIFormat.inc:

function QuitarComodines($texto, $idioma);
function PonerComodines($texto, $idioma);

function FormatHref ($idioma, $seccion, $tipo=CONTENIDO_CONTENIDO_CONTENIDO,

$contenido=0, $href_accion="", $transformar=true, $ssl=false);

function FormatDoc($Campos, $Idioma);
function FormatMenu($Campos, $Grafico, $Idioma);
function FormatSubMenu($Campos, $Grafico, $Idioma);
function FormatContenido($Campos, $Grafico, $Mini, $Idioma);
function FormatSeccion($Campos, $Grafico, $Idioma);
function FormatBoletin($Campos, $Grafico, $Idioma);
function FormatMeta ($Campos, $Idioma);
function FormatCanal($Campos, $Grafico, $Idioma);
function FormatUsuario($Campos);

8.8. APIDefines.inc:

// **************************************
// ** CONFIGURARCIÓN DE UN LLAMADA
// **************************************

define(PARAMETRO_IDIOMA,"idioma");
define(PARAMETRO_SECCION,"seccion");
define(PARAMETRO_CONTENIDO_TIPO,"ctipo");
define(PARAMETRO_CONTENIDO,"contenido");
define(PARAMETRO_ACCION,"accion");

// **************************************
// ** CAMPOS EN LOS ARRAYS DE DATOS
// **************************************

define(CAMPO_ABREV, "abrev");
define(CAMPO_ACTIVO, "activo");
define(CAMPO_ALBUMES,"albumes");
define(CAMPO_ALTO, "alto");

API del MerkaWeb® 20070118-rev.0

 Página 25 de 32

define(CAMPO_ANCHO, "ancho");
define(CAMPO_APP, "app");
define(CAMPO_ARCHIVO, "archivo");
define(CAMPO_ASUNTO, "asunto");
define(CAMPO_CANAL, "canal");
define(CAMPO_CANALES, "canales");
define(CAMPO_CONTENIDO, "contenido");
define(CAMPO_CONTENIDO_HTML, "contenido_html");
define(CAMPO_CONTENIDO_TIPO, "contenidotipo");
define(CAMPO_CONTENIDOS, "contenidos");
define(CAMPO_DATOS, "datos");
define(CAMPO_DISCO, "disco");
define(CAMPO_DOC_CONTENIDO, "contenido");
define(CAMPO_DOC_HEIGHT, "height");
define(CAMPO_DOC_MIME, "mime");
define(CAMPO_DOC_SIZE, "size");
define(CAMPO_DOC_TYPE, "type");
define(CAMPO_DOC_WIDTH, "width");
define(CAMPO_DOC_NOMBRE, "nombre");
define(CAMPO_DOC, "doc");
define(CAMPO_DOCS, "docs");
define(CAMPO_EMAIL_ASUNTO, "email_asunto");
define(CAMPO_EMAIL_FROM, "email_from");
define(CAMPO_EMAIL_NAME, "email_nombre");
define(CAMPO_EMAIL_TEXTO, "email_texto");
define(CAMPO_EMAIL_HTML, "email_html");
define(CAMPO_ENLACE, "enlace");
define(CAMPO_ENLACES, "enlaces");
define(CAMPO_ESTILO, "estilo");
define(CAMPO_ESTADO, "estado");
define(CAMPO_GRAFICO, "grafico");
define(CAMPO_GRUPOS, "grupos");
define(CAMPO_HTML, "html");
define(CAMPO_HTML_ENLACE, "htmlenlace");
define(CAMPO_HREF, "href");
define(CAMPO_ID, "id");
define(CAMPO_IDIOMA, "idioma");
define(CAMPO_MENUS, "menus");
define(CAMPO_METAS, "metas");
define(CAMPO_MIGAS_CONTENIDO, "miga_contenido");
define(CAMPO_MIGAS_COPIA, "miga_copia");
define(CAMPO_MIGAS_GET, "miga_get");
define(CAMPO_MIGAS_IDIOMA, "miga_idioma");
define(CAMPO_MIGAS_PARAMETROS, "miga_parametros");
define(CAMPO_MIGAS_POST, "miga_post");
define(CAMPO_MIGAS_SECCION, "miga_seccion");
define(CAMPO_MIGAS_USUARIO, "miga_usuario");
define(CAMPO_MINI, "mini");
define(CAMPO_NIVEL, "nivel");
define(CAMPO_NOMBRE, "nombre");
define(CAMPO_NUMERO, "num");
define(CAMPO_ORIGEN, "origen");
define(CAMPO_PADRE, "padre");
define(CAMPO_PAGINA, "pagina");
define(CAMPO_PAGINAS, "paginas");
define(CAMPO_PAGO, "pago");
define(CAMPO_PESO, "peso");

API del MerkaWeb® 20070118-rev.0

 Página 26 de 32

define(CAMPO_PRIVADO, "privado");
define(CAMPO_POPUP, "popup");
define(CAMPO_RESUMEN, "resumen");
define(CAMPO_SECCION, "seccion");
define(CAMPO_SIZE, "size");
define(CAMPO_SSL, "ssl");
define(CAMPO_SUBTITULO, "subtitulo");
define(CAMPO_TEXTO, "texto");
define(CAMPO_TITULO, "titulo");
define(CAMPO_TOTAL, "total");
define(CAMPO_USUARIO, "usuario");
define(CAMPO_USUARIO_CONTACTO,"usu_contaco");
define(CAMPO_USUARIO_CLAVE,"usu_pass");
define(CAMPO_USUARIO_CP,"usu_cp");
define(CAMPO_USUARIO_DIRECCION,"usu_direccion");
define(CAMPO_USUARIO_DNI,"usu_dni");
define(CAMPO_USUARIO_EMAIL,"usu_email");
define(CAMPO_USUARIO_EMPRESA,"usu_empresa");
define(CAMPO_USUARIO_IDIOMA,"usu_idioma");
define(CAMPO_USUARIO_PAIS,"usu_pais");
define(CAMPO_USUARIO_POBLACION,"usu_poblacion");
define(CAMPO_USUARIO_PROVINCIA,"usu_provincia");
define(CAMPO_USUARIO_TELEFONO,"usu_telefono");
define(CAMPO_USUARIO_MOVIL,"usu_movil");
define(CAMPO_USUARIO_PERFIL,"usu_perfil");

// **************************************
// ** DEFINICIÓN DE LOS CONTENIDOS
// **************************************

$i=-1;
define(CONTENIDO_NINGUNO, ++$i);
define(CONTENIDO_MAQUETACION_MENU, ++$i);
define(CONTENIDO_CONTENIDO_CONTENIDO, ++$i);
define(CONTENIDO_CONTENIDO_DOCUMENTO, ++$i);
define(CONTENIDO_CONTENIDO_IMAGEN, ++$i);
define(CONTENIDO_CONTENIDO_MULTIMEDIA, ++$i);
define(CONTENIDO_CONTENIDO_ALBUM, ++$i);
define(CONTENIDO_BOLETIN_BOLETIN, ++$i);
define(CONTENIDO_CANAL_CANAL, ++$i);
define(CONTENIDO_ACCION, ++$i);
define(CONTENIDO_EMAIL, ++$i);
unset($i);

// **************************************
// ** COMODINES
// **************************************

define(COMODIN_IDIOMA, "%idioma%");
define(COMODIN_SERVIDOR, "%servidor%");
define(COMODIN_SERVIDOR_FIJO, "%servidor_fijo%");
define(COMODIN_CAMPOS, "%");

API del MerkaWeb® 20070118-rev.0

 Página 27 de 32

// **************************************
// ** PLANTILLAS
// **************************************

define(TEMPLATE_PLANTILLAS_SEPARADOR, "|");
define(TEMPLATE_PLANTILLAS_EXTENSION, ".tpl");
define(TEMPLATE_PLANTILLAS_PROCESOS, "process.inc");
define(TEMPLATE_PLANTILLAS_LISTADO_CONTENIDO,
 "main".TEMPLATE_PLANTILLAS_SEPARADOR.
 "menu".TEMPLATE_PLANTILLAS_SEPARADOR.
 "contenido".TEMPLATE_PLANTILLAS_SEPARADOR.
 "documento".TEMPLATE_PLANTILLAS_SEPARADOR.
 "imagen".TEMPLATE_PLANTILLAS_SEPARADOR.
 "album".TEMPLATE_PLANTILLAS_SEPARADOR.
 "boletin".TEMPLATE_PLANTILLAS_SEPARADOR.
 "canal");
define(TEMPLATE_PLANTILLAS_LISTADO_LISTADOS,
 "main".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstmenus".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstcontenidos".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstdocumentos".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstimagenes".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstalbunes".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstboletines".TEMPLATE_PLANTILLAS_SEPARADOR.
 "lstcanales");

define(TEMPLATE_DELIMIT_IN_INI, "{");
define(TEMPLATE_DELIMIT_IN_FIN, "}");
define(TEMPLATE_DELIMIT_OUT_INI, "{/");
define(TEMPLATE_DELIMIT_OUT_FIN, "}");
define(TEMPLATE_DELIMIT_SEPARATOR, " ");
define(TEMPLATE_DELIMIT_ASIGN, "=");

define(TEMPLATE_DEFINE_CAMPO_INICIO, "//");
define(TEMPLATE_DEFINE_CAMPO_LOCAL, "/");
define(TEMPLATE_DEFINE_CAMPO_BUSCAR, "#");
define(TEMPLATE_DEFINE_CAMPOS_CAMPOS, "/");
define(TEMPLATE_DEFINE_CAMPOS_ID, ":");

define(TEMPLATE_DEFINE_BLOQUE, "block");
define(TEMPLATE_DEFINE_ITEM, "item");
define(TEMPLATE_DEFINE_ENLACE, "enlace");
define(TEMPLATE_DEFINE_PHP, "php");
define(TEMPLATE_DEFINE_IF, "if");
define(TEMPLATE_DEFINE_DICC, "dicc");
define(TEMPLATE_DEFINE_ASSIGN, "assign");
define(TEMPLATE_DEFINE_VALUE, "value");

define(TEMPLATE_CAMPO_NOMBRE, "name");
define(TEMPLATE_CAMPO_CAMPO, "field");
define(TEMPLATE_CAMPO_PADRE, "block");
define(TEMPLATE_CAMPO_NUMERO, "id");
define(TEMPLATE_CAMPO_SRC, "src");
define(TEMPLATE_CAMPO_SENTIDO, "sen");
define(TEMPLATE_CAMPO_FORMAT, "format");
define(TEMPLATE_CAMPO_SIZE, "size");
define(TEMPLATE_CAMPO_CONDICION, "con");

API del MerkaWeb® 20070118-rev.0

 Página 28 de 32

define(TEMPLATE_CAMPO_VALOR, "value");
define(TEMPLATE_CAMPO_TAGS, "tags");

define(TEMPLATE_CAMPO_SENTIDO_DEBAJO, -1);
define(TEMPLATE_CAMPO_SENTIDO_NULO, "0");
define(TEMPLATE_CAMPO_SENTIDO_ENCIMA, 1);

define(TEMPLATE_CAMPO_CONDICION_DES, "0");
define(TEMPLATE_CAMPO_CONDICION_IGU, "1");
define(TEMPLATE_CAMPO_CONDICION_MAY, "2");
define(TEMPLATE_CAMPO_CONDICION_MEN, "3");
define(TEMPLATE_CAMPO_CONDICION_MAI, "4");
define(TEMPLATE_CAMPO_CONDICION_MEI, "5");

define(TEMPLATE_BLOQUE_MAIN, "main");
define(TEMPLATE_ARCHIVO_MAIN, "main");
define(TEMPLATE_BLOQUE_CONTENIDO, "contenido");

API del MerkaWeb® 20070118-rev.0

 Página 29 de 32

9. Datos generados.

Al procesar la información en la API y buscarla en la base de datos con alguna de sus clases, los
resultado vuelven siempre debidamente formateados por las funciones en el archivo
“APIFormat.inc”.

A cualquier estructura generada por la API, se puede añadir más datos en los campos que el
programador defina, y que luego puedan ser accedidos desde las plantillas. Como cuando queremos
ampliar datos de algún contenido o sección.

Para describir los vectores de datos que se pueden encontrar, empezaremos por la que tiene
inicialmente una plantilla que va ha procesar una página Web e iremos bajando de nivel.

9.1. Datos iniciales:

$datos datos de una sección.
$datos[CAMPO_CONTENIDO] datos de un contenido.
$datos[CAMPO_CONTENIDO_HTML] resultado del procesado del contenido.

Por ejemplo, desde una de las plantillas de sección (main.tpl) podría accederse a estos datos de la
siguiente manera:

 {item name=titulo_seccion field=/CAMPO_TITULO}
 {item name=titulo_contenido field=/CAMPO_CONTENIDO/CAMPO_TITULO}

 {item name=resultado_del_contenido field=/CAMPO_CONTENIDO_HTML}

La última línea es ejemplo de cómo enlazar en la plantilla de la sección lo que se ha procesado en
el contenido.

9.2. Datos de una sección:

$seccion[CAMPO_ID] identificador de la sección.
$seccion[CAMPO_NOMBRE] nombre de la sección.
$seccion[CAMPO_TITULO] título de la sección.
$seccion[CAMPO_GRAFICO] datos del documento (gráfico).
$seccion[CAMPO_HTML] código html equivalente (gráfico o título).
$seccion[CAMPO_ESTILO] estilo de la sección.

Si ha cargado los datos relacionados con la sección:

$seccion[CAMPO_MENUS] listado de menús (sin datos relacionados).
$seccion[CAMPO_CONTENIDOS] listado de contenidos (sin datos relacionados).
$seccion[CAMPO_METAS] listado de meta-tags.

9.3. Datos de un contenido:

$contenido[CAMPO_ID] identificador del contenido.
$contenido[CAMPO_NOMBRE] nombre del contenido.
$contenido[CAMPO_PRIVADO] identifica como un contenido privado.
$contenido[CAMPO_TITULO] título del contenido.
$contenido[CAMPO_SUBTITULO] subtítulo del contenido.
$contenido[CAMPO_RESUMEN] resumen del contenido.

API del MerkaWeb® 20070118-rev.0

 Página 30 de 32

$contenido[CAMPO_TEXTO] texto del contenido.
$contenido[CAMPO_MINI] datos del documento (gráfico pequeño).
$contenido[CAMPO_GRAFICO] datos del documento (gráfico grande).
$contenido[CAMPO_CANAL] identificador del canal RSS al que está registrado.
$contenido[CAMPO_SECCION] identificador de la sección en la que debería estar.
$contenido[CAMPO_ESTILO] estilo del contenido.
$contenido[CAMPO_METAS] listado de meta-tags.

Si ha cargado los datos relacionados con el contenido:

$contenido[CAMPO_MENUS] listado de menús (sin datos relacionados).
$contenido[CAMPO_CONTENIDOS] listado de contenidos (sin datos relacionados).
$contenido[CAMPO_DOCS] listado de documentos.

Por ejemplo, desde una de las plantillas de contenidos (contenido.tpl):

 {item name=identificador_seccion field=//CAMPO_ID}
 {item name=titulo_contenido field=/ CAMPO_TITULO}

9.4. Datos de un documento:

$documento[CAMPO_ID] identificador del documento.
$documento[CAMPO_NOMBRE] nombre del documento.
$documento[CAMPO_PRIVADO] identifica como un documento privado.
$documento[CAMPO_DISCO] identifica como un documento en disco.
$documento[CAMPO_TITULO] título del documento.
$documento[CAMPO_ARCHIVO] enlace para ver el documento.
$documento[CAMPO_APP] tipo de documento.
$documento[CAMPO_SIZE] tamaño del documento.
$documento[CAMPO_ALTO] alto del documento.
$documento[CAMPO_ANCHO] ancho del documento.
$documento[CAMPO_GRAFICO] identifica como un gráfico.
$documento[CAMPO_CONTENIDO] contenido del documento si no está en disco.
$documento[CAMPO_ORIGEN] nombre del archivo de origen del documento.
$documento[CAMPO_TITULO] título del documento.
$documento[CAMPO_HTML] código html si es un gráfico.

9.5. Datos de un menú:

$menu[CAMPO_ID] identificador del menú.
$menu[CAMPO_NOMBRE] nombre del menú.
$menu[CAMPO_TITULO] título del menú.
$menu[CAMPO_GRAFICO] datos del documento (gráfico).
$menu[CAMPO_HTML] código html (gráfico o título).

Si ha cargado los datos relacionados con el menú:

$menú[CAMPO_ENLACES] listado de enlaces.

9.6. Datos de un enlace:

$enlace[CAMPO_ID] identificador del enlace.
$enlace[CAMPO_PESO] peso del enlace.
$enlace[CAMPO_TITULO] título del menú.

API del MerkaWeb® 20070118-rev.0

 Página 31 de 32

$enlace[CAMPO_GRAFICO] datos del documento (gráfico).
$enlace[CAMPO_SECCION] identificador de la sección del enlace.
$enlace[CAMPO_CONTENIDO] identificador del contenido del enlace.
$enlace[CAMPO_CONTENIDO_TIPO] identificador del tipo de contenido del enlace.
$enlace[CAMPO_HREF] acción o dirección web del enlace.
$enlace[CAMPO_POPUP] indica si debe abrirse en otra ventana.
$enlace[CAMPO_SSL] indica si debe usarse servidor seguro.
$enlace[CAMPO_ENLACE] dirección del enlace con los datos anteriores.
$enlace[CAMPO_HTML_ENLACE] la dirección en html (.
$enlace[CAMPO_HTML] código html del enlace con el título o el gráfico:
 (<a ..>título o gráfico).

9.7. Datos de los metas:

$metatag[CAMPO_NOMBRE] nombre del met-tag.
$metatag[CAMPO_HTML] código html (<meta> o <title>).

9.8. Datos de los listados:

$listado[CAMPO_NUMERO] número de elementos.
$listado[1] datos del elemento número 1.
$listado[…] datos del elemento número ….

9.9. Datos de un boletín:

$boletin[CAMPO_ID] identificador del boletín.
$boletin[CAMPO_NOMBRE] nombre del boletín.
$boletin[CAMPO_ASUNTO] asunto del boletín.
$boletin[CAMPO_TITULO] título del boletín.
$boletin[CAMPO_SUBTITULO] subtitulo del boletín.
$boletin[CAMPO_ESTILO] estilo del boletín.
$boletin[CAMPO_GRAFICO] datos del documento (gráfico).
$boletin[CAMPO_HTML] código html del boletín (gráfico o título).

Si ha cargado los datos relacionados con el boletín:

$boletin[CAMPO_MENUS] listado de menús.
$boletin[CAMPO_CONTENIDOS] listado de contenidos.

9.10. Datos de un canal:

$canal[CAMPO_ID] identificador del boletín.
$canal[CAMPO_NOMBRE] nombre del boletín.
$canal[CAMPO_TITULO] título del boletín.
$canal[CAMPO_RESUMEN] resumen del boletín.
$canal[CAMPO_GRAFICO] datos del documento (gráfico).

Si ha cargado los datos relacionados con el menú:

$menú[CAMPO_ENLACES] listado de contenidos (sin datos relacionados).

API del MerkaWeb® 20070118-rev.0

 Página 32 de 32

9.11. Datos de un usuario:

$usuario[CAMPO_ID] identificador del usuario.
$usuario[CAMPO_USUARIO_CONTACTO] nombre de contacto del usuario.
$usuario[CAMPO_USUARIO_EMPRESA] empresa del usuario.
$usuario[CAMPO_USUARIO_DNI] DNI o CIF del usuario.
$usuario[CAMPO_USUARIO_DIRECCION] dirección del usuario.
$usuario[CAMPO_USUARIO_POBLACION] población del usuario.
$usuario[CAMPO_USUARIO_CP] C.P. del usuario.
$usuario[CAMPO_USUARIO_PROVINCIA] provincia del usuario.
$usuario[CAMPO_USUARIO_PAIS] país del usuario.
$usuario[CAMPO_USUARIO_IDIOMA] idioma del usuario.
$usuario[CAMPO_USUARIO_TELEFONO] teléfono del usuario.
$usuario[CAMPO_USUARIO_MOVIL] móvil del usuario.
$usuario[CAMPO_USUARIO_EMAIL] email del usuario.
$usuario[CAMPO_USUARIO_CLAVE] clave de identificación del usuario.
$usuario[CAMPO_USUARIO_PERFIL] perfil de acceso del usuario.

