Programacion de Plantillas 20070117-rev.0

Manual de Programacion

Programacion de

MERIER

1. ¢Qué es una plantilla?

2. ¢Donde se crean y como se usan?

3. Nombres y extensiones.

4. Procesos en las plantillas.

5. Lenguaje de programacion “Meta-Ordenes”.

6. Resumen de las “"Merta-Ordenes”.

7. Constantes de la APIDefines.inc para las plantillas.
8. Ejemplo de plantilla para una seccién.

9. Ejemplo de plantilla para un contenido.

10. Ejemplo de process.inc.

Autor Koldo G. Castillo
Modificado el 18 de enero de 2007

‘fmemaweb bgina 1 de 18 "memagest



Programacion de Plantillas 20070117-rev.0

1. ¢Qué es una plantilla?

Las plantillas son una forma de separar el cédigo de procesos programados en PHP del cédigo HTML
gue deben usar para generar un codigo HTML final.

Para evitar cddigo en PHP como el del ejemplo siguiente:

$datol = 50; $dato2=20; $dato=1;
If ($dato==1)
echo “<html><body>".$datol.” y “.$dato2.” son los resultados</body></htm|>";
else
echo “<html><body>Nos ha contado “.$datol.” que te llamas “.$dato2.”. </body></html>";

Con los problemas que crea este tipo de programacién cuando hay que hacer cambios de disefio.

Un ejemplo de plantillas que se usan tanto en el MerkaWeb® como en el MerkaGest®, podria ser el
siguiente:

ejemplo.tpl
<html><body>{item field=/datol}</body></html>

ejemplo.php
Plantilla = new MKWTemplate();
$Datos[“dato1”] = “Texto de inicio”;
$resultado = Plantilla->Template($Datos);
echo $resultado;

Resultado:
<html|><body>Texto de inicio</body></htm|>

De esta manera, siempre tendremos separado el trabajo de programacién de los PHP, del trabajo
del técnico encargado de crear y modificar la plantilla sin necesidad de que entre en el cédigo en
PHP para hacerlo.

El ejemplo escrito anteriormente no es correcto con el nivel de la clase "MKWTemplate” actual. Pero
nos vale para ilustrar como se maneja. Hay que tener en cuenta siempre, que esta clase forma
parte de las clases de la API del gestor, con lo que espera recibir informacién formateada como se
prepara en la API. Para mas informacién puedes consultar el manual de programacion de la API.

‘fmen(aweb bagina 2 de 18 'fmemagest



Programacion de Plantillas 20070117-rev.0

2. ¢Donde se crean y como se usan?

Si tenemos un proyecto MerkaWeb® MultiWeb o MerkaGest® MultiWeb, tenemos la posibilidad de
dar de alta nuevas Websites que administrar desde nuestro gestor.

En la ficha de cada Website hay un campo en el que se indica la carpeta en la que se guardan las
plantillas que se usaran para esa Website. Que a su vez estara en la carpeta “templates” del gestor
(merkaweb, multiweb, merkagest, ...).

Con lo que tendriamos algo como:
/multiweb/templates/*
/web1/*
/main.tpl
/contenido.tpl
/archivos/*

/imgl.gif
J/css/*
/clase.css
/...
/...
/...
/web2/*

/...

Las plantillas se pueden emplear para generar las Webs, pero también para obtener otros cédigos
html. Como por ejemplo emails que se quieran enviar desde la Web.

2.1. Plantillas para la Web:

Cuando un usuario quiere ver una Web y se la pide al gestor, éste carga los datos que tiene que
mostrar, y después emplea la plantilla adecuada para generar la Web antes de mostrarla.

En este caso los nombres de las plantilla estan ya definidos en unas constantes, que puedes
consultar tanto en el manual de programacion de la API como al final de este documento.

2.2. Plantillas para otros elementos:

Tiene la posibilidad de indicarle el nombre de la plantilla que quieres ejecutar o incluso pasarle el
codigo de plantilla y pasarle los datos que debe emplear para que te devuelva un cédigo HTML.

Por ejemplo, se pueden usar las plantillas para tener formatos de emails en la gestién de
contenidos, y luego ser enviados por correo usando los datos que se quieran enviar:

1. Emails de configuracion de registro.

2. Emails de recordatorio de contrasefia.

3. Emails de contacto, sugerencias, ...

4,

"memaweb '7m erkagest

Pagina 3 de 18



Programacion de Plantillas 20070117-rev.0

3. Nombres y extensiones

Como se ha indicado anteriormente, aunque puedes indicar la plantilla que quieres que use, la clase
“MKWTemplate” de la API del gestor tiene una lista de plantillas y en funciéon al contenido que
quieras mostrar y al estilo de la seccién y del contenido escoge la plantilla.

La busqueda de la plantilla sigue estos pasos:
1. Coge el nombre de la plantilla y sino se lo han dado mira en la lista a ver cual corresponde
al tipo de contenido que se quiere mostrar.
2. Le afade el numero de estilo y la extension.
3. Si no existe ese archivo cambia el nombre quitando el estilo.
4. Si existe el archivo carga esa plantilla.

Por ejemplo:
1. Para cargar la plantilla de contenido tiene el nombre “contenido”.
2. El contenido que quiere mostrarse tiene el estilo 5, por lo que el archivo que busca es
“contenidob5.tpl”.
3. Si no existe busca el archivo “contenido.tpl”.
4. Si existe carga la plantilla.

Hay unas constantes al final del documento donde viene todo lo predefinido en este campo. Como
la extension, la carpeta de archivos, la lista de plantillas, ... .

Las plantillas estan en una carpeta concreta, pero el codigo HTML también incluye otros archivos
como CSS, Imagenes o JavaScript. Todos estos archivos deben estar guardados dentro de una
carpeta de archivos en la plantilla. El nombre de esta carpeta es otra constante predefinida para
todas las plantillas.

En el manual de programacion de la API y hay mas informacidon acerca del comportamiento de la
clase “MKWTemplate".

‘7men<aweb bagina 4 de 18 '7m erkagest



Programacion de Plantillas 20070117-rev.0

4. Procesos en las plantillas

Cuando se va ha cargar una Web la API sigue el siguiente algoritmo:

1. Carga la configuracién de la Web a mostrar.
2. Carga los datos en memoria (usuario registrado, idiomas, parametros enviados, ...).
3. Si la carpeta de la plantilla tiene un archivo de procesos:
a. Importa sus funciones.
b. Si existe la funcidn "template_preprocess", procede a realizar una llamada a dicha
funcién pasandole como parametro un enlace a si mismo.
4. Procesa la peticidon para obtener los datos que hay que enviar a la plantilla (los datos de la
seccién y del contenido).
5. Si existe la funcién “template_posprocess”, procede como se ha indicado antes.
6. Se mandan los datos a la plantilla y se obtiene el resultado.

Si necesitamos manejar la informaciéon que genera la API, antes o después de que la procese,
tenemos que crear en la carpeta de la plantilla de la Website el archivo de procesos. Y crear la
funcién o funciones que queramos emplear que reciben como parametro por referencia el enlace a
la API.

Por Ejemplo:

include "formularios.inc";
define (FRONT_REG_PAGINA, 10);

function template_preprocess($MKW) { return; }

function template_posprocess($MKW) {
$seccion = $MKW->GetDataSeccion();
$accion = $MKW->GetDataAccion();
$tipo_conte = $MKW->GetDataTipo();
$orden = $MKW->GetDataOrden();
$filtro = $MKW->ctrilseccion;
$idioma = $MKW->GetDataldioma();
$get = $MKW->GetDataGet();
If ($seccion[ CAMPO_NOMBRE]=="PORTADA") {

b
b

Nos sirve para poder:

Cargar mas datos en el contenido que se va ha mostrar.
Cargar o ampliar los datos de la portada.

Registrar un formulario.

Realizar una accién (como enviar un email).

uhwnN e

La API solo procesa la informacidon que se quiere mostrar y después la pasara por una plantilla,
pero todas las acciones que queremos que nuestra Web realice deben ser programas desde una de
estas funciones.

Por ejemplo:
1. Recomendar la Web mandando un email a un amigo.
2. Mostrar y enviar el formulario de contacto.
3. Registrarse en el boletin.
4.

‘fmemaweb bagina 5 de 18 'fm erkagest



Programacion de Plantillas 20070117-rev.0

5. Lenguaje de programaciéon “Meta-Ordenes”

Como se indica en el titulo, mas que un lenguaje de programacién en realidad es un conjunto de
“Meta-Ordenes” embebido en cédigo HTML.

El procesador de plantillas coge el cédigo de la plantilla y va buscando las “Meta-Ordenes” y las
sustituye por su valor equivalente después de procesarlas. Finalmente devuelve un cédigo HTML
donde ha sustituido todas las “Meta-Ordenes” por su valor adecuado segun la lista de datos que le
han pasado.

Todo esto desde la clase “MKWTemplate” que puedes consultar en el manual de programacion de la
API.

Los nombres de los campos empleados en las explicaciones, asi como todos los inicios y finales de
bloque, ..., pueden cambiar ya que son constantes definidas en la “APIDefines.inc” y listadas al final
de este manual.

Al crear las “Meta-Ordenes”, los valores de los campos que no se especifican cogen por defecto sus
valores nulos (0) o vacios.

5.1. META-ORDENES:
5.1.1. Bloques:

Los bloques son “Meta-Ordenes” compuestas por una orden de inicio y una de fin, y cuya finalidad
es actuar sobre el cédigo que hay entre ambas ordenes. Puede haber bloques anidados asi que es
muy importante darles un nombre coherente a cada uno de ellos.

Los bloques empiezan por: “{sentencia hombre=ejemplo “+campos+"}"
Y finalizan por: “{/sentencia nombre=ejemplo}”

Y en medio esta el cddigo que hay que procesar en el bloque.

5.1.1.1 {block}{/block}:

Se emplea cuando se quiere procesar el codigo por cada elemento que se indica en el bloque, o
cuando se quiere acceder a los datos de un Unico elemento y no estar poniendo continuamente el
nombre del elemento.

Por ejemplo, escribir todos los enlaces de un menu:
{block ... field=/CAMPO_MENU:1/CAMPO_ENLACES ...}
{item ... field=CAMPO_HTML ...}
{/block}

O por ejemplo,
{block ... field=/CAMPO_MENU:1/CAMPO_ENLACES:5 ...}
{item ... field=CAMPO_ARCHIVO ...}{item ... field=CAMPO_TITULO ...}
{/block}

Seria equivalente a
{item ... field=/CAMPO_MENU:1/CAMPO_ENLACES:5/CAMPO_ARCHIVO ...}
{item ... field=/CAMPO_MENU:1/CAMPO_ENLACES:5/CAMPO_TITULO ...}

Los campos que definen el comportamiento de un bloque son:

\7men(aweb '7m erkagest

Pagina 6 de 18



Programacion de Plantillas 20070117-rev.0

1. “name” : nombre del bloque.

2. “src” : si hay cdédigo que cargar de algun archivo.

3. “field” : campo de donde coger los datos que procesar con el cédigo.

4. “id” : dentro de esos datos puedes indicar un solo elemento.

5. “con” : indica que el “id” es el contador desde el que empezar el bucle “sen=1" 0 es

el limite al que llegar “sen=-1".

Algunos ejemplos:
{block name=ejemplo src=css field=/CAMPO_ENLACES?} ...cédigo... {/block name=ejemplo}
Agregara el cddigo en la plantilla “css” al codigo del bloque, y lo repetird por cada elemento
del campo “/CAMPO_ENLACES".

{block hame=ejemplo src=css field=/CAMPO_ENLACES id=4}...
En este caso lo procesara una vez pasando como datos “/CAMPO_ENLACES:4”

{block hame=ejemplo src=css field=/CAMPO_ENLACES id=4 sen=-1} ...
En este caso lo repetird por los elementos del 1 al 4 del campo “/CAMPO_ENLACES”.

{block name=ejemplo src=css field=/CAMPO_ENLACES id=4 sen=1} ...
En este caso lo repetira por los elementos del 4 al final del campo “/CAMPO_ENLACES”".

5.1.1.2 {if}{/if}:

Evalla la condicion que se le pasa en los campos que definen el bloque, y si se cumple incluira el
codigo que contiene. En caso contrario lo quitara del codigo.

Los campos que definen su comportamiento son:

1. “name” : nombre del bloque.

2. “field” : campo que indica el dato que va ha ser comparado.

3. “value” : campo que indica el dato con el que comprar.

4. “sen” : condicion que se debe cumplir (<>, ==, >, <, >=, <=) (0..5).

Algunos ejemplos:
{if name=ejemplo field=/CAMPO_ID sen=1 value=0} Sin Identificar {/if name=ejemplo}
Si el campo de identificacidon es nulo, apareceria el texto indicado.

{if name=ejemplo field=/CAMPO_ENLACES sen=0 value=vector()} ... {/if name=ejemplo}
Si el campo de enlaces no es un vector vacio, procesara el cédigo.

5.1.1.3 {php}{/php}:

Este es el Unico bloque que no permite bloques anidados de ningun tipo. Por que el cédigo que
contiene serd ejecutado por el intérprete de PHP. Por lo tanto tampoco requiere nombre, y no tiene
ningln campo que haya que definir.

Puede ser muy util en tiempo de depuracidon para saber con que datos estamos llegando a un
bloque.

Ejemplo:
{php}echo "HOLAAAAAA"; {/php}
{block ...}
{php}print_r($bloqueDatos);{/php}
{/block ...}

'7men(aweb bagina 7 de 18 "m erkagest



Programacion de Plantillas 20070117-rev.0

5.1.2. Campos:

Los campos son “Meta-Ordenes” que se evallan y son sustituidas por el valor resultante.

5.1.2.1 {item}: Busca el valor del campo especificado y lo devuelve formateado:
1. “name” : nombre del campo.
2. “field” : campo dentro de los datos que se estan procesando donde esta el valor a ser
devuelto.
3. tid” : dentro de este valor a devolver, escoge un elemento concreto.
4. “size” : si es un texto, indica el tamafno maximo vy si lo excede lo corta y le anade el

texto pasado en el campo “format”. Si es numérico, indica el nUmero de decimales.

5. “format” : si es un texto que supera el campo “size” en tamano, lo corta y le aflade su

valor al final. Si no ha sido definido el campo “size” supone que es una fecha, y es el
formato de la fecha. Aunque si no hay campo que formatear, coge la fecha actual.

6. “tags” : si se indica un valor 0 quitaria las sentencias HTML que pudiera contener el

valor que se esta procesando. Si no esta definido o vale 1, no quitara nada.

7. “block” : en caso de que quiera acceder a datos de un bloque superior al anidado.

Por ejemplo,

al final.

5.1.2.2

NouhrwNe=

Por eje

{item name=titulo field=/CAMPO_TITULO size=30 format=... block=categoria}
Si el titulo tiene un tamano mayor de 30 caracteres lo cortard a esa medida y le pondra “...”

{item name=titulo field=/CAMPO_PRECIO size=2}
Saca el precio con 2 decimales.

{enlace}:genera un enlace segun la funciéon de formateo en “APIFormat.inc”:

“name” : nombre del campo.

“seccion” : seccién que mostrar.

“ctipo” : tipo del contenido.

“contenido” : cddigo del contenido.

“accion” : accién que agregar al enlace.

“ssl” : usara conexion segura (SSL) si estd a 1.

“block” : en caso de que quiera acceder a datos de un bloque superior al anidado.
mplo

{enlace name=portada seccion=//CAMPO_ID ctipo=CONTENIDO_NINGUNO}
http://www.dominio.com/index.php?idioma=es&seccion=1&ctipo=0&contenido=0

5.1.2.3 {dicc}: busca en el diccionario segun el idioma en el que se estd viendo la web la
traduccion de la palabra que buscamos.

el

Por eje

“name” : nombre del campo.

“field” : campo dentro de los datos que buscara en el diccionario.

“id” : dentro de este valor a buscar, escoge un elemento concreto.

“block” : en caso de que quiera acceder a datos de un bloque superior al anidado.
mplo

{dicc name=texto field=buscar}
Escribiria la traduccién en el idioma en el que se esté viendo la Web de esa palabra.

5.1.2.4 {assign}: crea una variable global mientras se procesa la plantilla.

PLUNE

“name” : nombre de la variable global a generar.

“value” : campo dentro de los datos que buscara en el diccionario.

“id” : dentro de este valor a buscar, escoge un elemento concreto.

“block” : en caso de que quiera acceder a datos de un bloque superior al anidado.

'7men<aweb bagina 8 de 18 '7m erkagest



Programacion de Plantillas 20070117-rev.0

Por ejemplo,

{assign name=identificador value=//CAMPO_ID}

Crearia una variable global llamada ‘“identificador” y que contendria el valor de
“//CAMPQO_ID".

5.1.2.5 {value}: devuelve el valor de la variable global.
1. “name” : nombre de la variable global a devolver.
Por ejemplo,
{value name=identificador }
Presentaria en pantalla el valor que habiamos guardado en esa variable.

5.2. DATOS:

Cuando tenemos que especificar el valor que queramos que cojan los campos, podemos acceder a
datos de las siguientes maneras:

5.2.1. Literales:

Siempre podemos especificar datos literales, es decir, nimeros, textos y constantes existentes en
“APIDefines.inc”. En el caso de los texto hay que indicar con comillas simples que lo es, excepto en
el campo “format” cuando es el final de un texto cortado, que como ya supone que es un texto no
hace falta agregar las comillas.

No puede usarse espacio en blanco, tampoco entre comillas, ya que el espacio en blanco es el
caracter usado para identificar la separacidén entre campos.

5.2.2. Datos del bloque en proceso:

El bloque que se esta procesando aporta unos datos, y para acceder a ellos se inicia el nombre del
campo con el texto “/"”. Como hemos estado viendo en los ejemplos anteriores.

Por ejemplo, “/CAMPO_ID"” accedera a $bloqueDatos[CAMPO_ID], suponiendo que $bloqueDatos es
la variable que contiene los datos del bloque.

Los datos que se estan procesando pueden contener vectores de datos, por lo que en el nombre se
puede construir una variable compleja. Como hacerlo se explica en un punto posterior.

5.2.3. Datos del bloque inicial:

Para acceder a los datos del primer bloque de datos se inicia el nombre del campo con el texto “//”.
Como hemos podido ver en algun ejemplo anterior.

Por ejemplo, “//CAMPO_ID" accedera a $this->datos[ CAMPO_ID], suponiendo que $ this->datos es
la variable que contiene los datos iniciales antes de empezar a procesas la plantilla.

Igual que en el punto anterior, los datos iniciales pueden contener vectores de datos, por lo que en
el nombre se puede construir una variable compleja. Como hacerlo se explica en un punto
posterior.

5.2.4. Variables globales del proceso:

Si hemos creado variables globales durante el proceso, podemos acceder a ellos tan solo
escribiendo su nombre, como si fueran constantes.

‘7men<aweb '7m erkagest

Pagina 9 de 18



Programacion de Plantillas 20070117-rev.0

5.2.5. Un elemento del gestor:

Si queremos buscar un elemento del gestor, podemos hacerlo iniciando el nombre con el texto “#".
En el campo “nombre” buscaria el tipo de dato que quieres buscar (por constante o valor
numeérico), y en el campo “id” el identificador del elemento.

Por ejemplo, "“#CONTENIDO_CONTENIDO_CONTENIDO” e “id=5", recogeria los datos del contenido
nimero 5.

5.2.5. Variables de la funcion de evaluacion:

1. $migas : los datos procesando la API.

2. $idioma : abreviatura del idioma en actual;

3. $idiomas : listado de idiomas disponibles, con abreviatura y nombre.
4, $seccion : codigo de la seccién actual.

5. $contenido : cddigo del contenido actual.

6. $tipo_conte : tipo de contenido.

7. $accion : accion.

8. $orden : orden.

9. $get : variables recibidas por el método GET.
10. $post : variables recibidas por el método POST.
11. $usuario : datos del usuario identificado en la web.

5.2.6. Variables de la clase MKWTemplate():

Si es necesario, se puede acceder a las variables propias de la clase a través de la sentencia “$this-
>nombre_variable"”;

Para obtener el listado completo, consultar el manual de programacién de la API donde se da
informacién de esta clase.

5.2.7. Variables de la API:

La clase "MKWTemplate”, tiene una variable que de enlace con la API que lo ha creado. Se puede
acceder a través de dicha variable a las variables y funciones de la API. Para ello empleariamos una
sentencia como “$this->MKW->nombre_variable”.

5.3. VARIABLES COMPLEJAS:

Con los datos que se estan procesando contienen vectores de datos, se puede construir una
variable completa que recorra el vector para obtener el dato que precisamos.

Para bajar de niveles por el vector usaremos el caracter */” y para escoger un elemento del vector

w,

el caracter “:” seguido del nimero. Por ejemplo, para una estructura como esta:

Datos = “nombre” => “prueba”

“nivell” =>
\\1II :>
“‘nombre” => “nivel 1.1”
“nivel2” =>
“‘nombre” => “nivel 1.1.2"
\\2[/ :>

“‘nombre” => “nivel 1.2”

"memaweb '7m erkagest

Pagina 10 de 18



Programacion de Plantillas 20070117-rev.0

Los siguientes accesos darian como resultado:

/nombre prueba
/nivell:1/nombre nivel 1.1
/nivell:1/nivel2/nombre nivel 1.1.2
/nivell:2/nombre nivel 1.2

'7men(aweb pagina 11 de 18 "memagest,



Programacion de Plantillas 20070117-rev.0

6. Resumen de “Meta-Ordenes”.

Sentencias y sus campos:
{block name=a field=b id=c sen=d src=e block=x}...cddigo...{/block name=a}
{if name=a field=b value=c con=d block=x}...codigo...{/block name=a}
{php}..cddigo..{/php}
{item name=i field=a id=b size=c format=d tags=e block=x}
{dicc name=d field=a id=b block=x}
{assign name=d value=a id=b block=x}
{value name=d}
Colores:
Caddigo a procesar
Campos opcionales

Campos obligatorios

Datos a los que se pueden acceder:

Literales

/ (datos del bloque de datos local)

/campo:1/campo

// (datos del bloque de datos inicial)
//campo/campo:1/campo

# (buscar un elemento: ‘nombre’ es el tipo e id el cédigo)
nombre_variable (para las variables globales)

$this->variable_clase (variables de la clase)

$this->MKW->variable_api (variables de la API)

$migas, $idioma, $idiomas, (variables de la funcién de procesado)
$seccion, $contenido,

$tipo_conte, $accion, $orden,

$usuario, $get, $post

'7men(aweb pagina 12 de 18 "memagest_



Programacion de Plantillas 20070117-rev.0

7. Constantes de la APIDefines.inc para las plantillas.

Ademas de toda la informacién a la que puede acceder la plantilla, tiene unas constantes creadas
para definir su comportamiento:

define(TEMPLATE_PLANTILLAS_SEPARADOR, "|");
define(TEMPLATE_PLANTILLAS_EXTENSION, ".tpl");
define(TEMPLATE_PLANTILLAS_PROCESOS, "process.inc");

define(TEMPLATE_PLANTILLAS_LISTADO_CONTENIDO,
"main". TEMPLATE_PLANTILLAS_SEPARADOR.
"menu". TEMPLATE_PLANTILLAS_SEPARADOR.
"contenido". TEMPLATE_PLANTILLAS_SEPARADOR.
"documento". TEMPLATE_PLANTILLAS_SEPARADOR.
"imagen".TEMPLATE_PLANTILLAS_SEPARADOR.
"album". TEMPLATE_PLANTILLAS_SEPARADOR.
"boletin". TEMPLATE_PLANTILLAS_SEPARADOR.
"canal");

define(TEMPLATE_PLANTILLAS_LISTADO_LISTADOS,
"main". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istmenus". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istcontenidos". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istdocumentos". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istimagenes". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istalbunes". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istboletines". TEMPLATE_PLANTILLAS_SEPARADOR.
"Istcanales");

define(TEMPLATE_DELIMIT_IN_INI, "{");
define(TEMPLATE_DELIMIT_IN_FIN, "}");
define(TEMPLATE_DELIMIT_OUT_INI, "{/");
define(TEMPLATE_DELIMIT_OUT_FIN, "}");
define(TEMPLATE_DELIMIT_SEPARATOR, " ");
define(TEMPLATE_DELIMIT_ASIGN, "=");

define(TEMPLATE_DEFINE_CAMPO_INICIO, "//");
define(TEMPLATE_DEFINE_CAMPO_LOCAL, "/");
define(TEMPLATE_DEFINE_CAMPO_BUSCAR, "#");
define(TEMPLATE_DEFINE_CAMPOS_CAMPOS, "/");
define(TEMPLATE_DEFINE_CAMPOS_ID, ":");

define(TEMPLATE_DEFINE_BLOQUE, "block");
define(TEMPLATE_DEFINE_ITEM, "item");
define(TEMPLATE_DEFINE_ENLACE, "enlace");
define(TEMPLATE_DEFINE_PHP, "php");
define(TEMPLATE_DEFINE_IF, "if");
define(TEMPLATE_DEFINE_DICC, "dicc");
define(TEMPLATE_DEFINE_ASSIGN, "assign");
define(TEMPLATE_DEFINE_VALUE, "value");

define(TEMPLATE_CAMPO_NOMBRE, "name");
define(TEMPLATE_CAMPO_CAMPO, "field");
define(TEMPLATE_CAMPO_PADRE, "block");
define(TEMPLATE_CAMPO_NUMERO, "id");
define(TEMPLATE_CAMPO_SRC, "src");

'7me“(aweb 2.0 Pagina 13 de 18 'fmer‘(we““q



Programacion de Plantillas 20070117-rev.0

define(TEMPLATE_CAMPO_SENTIDO, "sen");
define(TEMPLATE_CAMPO_FORMAT, "format");
define(TEMPLATE_CAMPO_SIZE, "size");
define(TEMPLATE_CAMPO_CONDICION, "con");
define(TEMPLATE_CAMPO_VALOR, "value");
define(TEMPLATE_CAMPO_TAGS, "tags");

define(TEMPLATE_CAMPO_CONDICION_DES, "0");
define(TEMPLATE_CAMPO_CONDICION_IGU, "1");
define(TEMPLATE_CAMPO_CONDICION_MAY, "2");
define(TEMPLATE_CAMPO_CONDICION_MEN, "3");
define(TEMPLATE_CAMPO_CONDICION_MAI, "4");
define(TEMPLATE_CAMPO_CONDICION_MEI, "5");

define(TEMPLATE_BLOQUE_MAIN, "main");
define(TEMPLATE_ARCHIVO_MAIN, "main");
define(TEMPLATE_BLOQUE_CONTENIDO, "contenido");

'7me“(aweb 2.0 Pagina 14 de 18 'fmer‘(we““q



Programacion de Plantillas 20070117-rev.0

8. Ejemplo de plantilla para una seccion.

<html>
<meta name="language" content="{item name=idioma field=$idioma}">

Zblock name=metas field=/CAMPO_METAS}
{item name=html field=/CAMPO_HTML}
{/block name=metas}

<link href="./archivos/css/estilos.css" rel="stylesheet" type="text/css" media="screen" />

<link rel="alternate" title="rss" type="application/rss+xml" title="RSS 2.0" href="{enlace name=enlace seccion=19
ctipo=CONTENIDO_CANAL_CANAL contenido=1 accion=" ssl=03}" target="_blank"/>
"." alt="{dicc name=dicc value="titulo'}" title="{dicc name=dicc value="titulo'}">

<img alt="{dicc name=dicc value="titulo'}" title="{dicc name=dicc value="titulo'}"
src="./archivos/img/logo_alimentatec_blanco.gif" width="229" height="91" alt="" hspace="0" vspace="0" border="0" />
</a>
{item name=banner field=/CAMPO_GRAFICO/CAMPO_HTML}

<a href=

{block name=menu field=/CAMPO_MENUS id=1}
<ul id="navlist">
{block name=submenu field=/CAMPO_ENLACES}
<li id="active">
{item name=html field=/CAMPO_HTML}
<ul style="display: block;" id="subnavlist{item name=html field=/CAMPO_ID}">
{block name=enlaces field=/CAMPO_ENLACES}
<li>{item name=html field=/CAMPO_HTML}</li>
{/block name=enlaces}
</ul>
</li>
{/block name=submenu}
</ul>
{/block name=menu}

{block name=menu field=/CAMPO_MENUS:2}
<ul id="navlist">
{block nhame=submenu field=/CAMPO_ENLACES}
<li id="active">
{item name=html field=/CAMPO_HTML}
<ul style="display: block;" id="subnavlist{item name=html field=/CAMPO_ID}">
{block name=enlaces field=/CAMPO_ENLACES}
<li>{item name=html field=/CAMPO_HTML}</li>
{/block name=enlaces}
</ul>
</li>
{/block name=submenu}
</ul>
{/block name=menu}

{if name=estilo field=$accion sen=0 value='extender'}
<div id="contenido">

{/if name=estilo}

{if name=estilo field=$accion sen=1 value='extender'}
<div id="contenidocompleto">

{/if name=estilo}

{item name=contenido field=//CAMPO_CONTENIDO_HTML}

{if name=solo_seccion field=$tipo_conte sen=1 value=0}

{/if name=solo_seccion}

</html>

'7men(aweb 2.0 Pagina 15 de 18 '7me“(we“ﬂ"j



Programacion de Plantillas 20070117-rev.0

9. Ejemplo de plantilla para un contenido.

{assign name=idcontenido value=/CAMPO_ID}
{assign name=idpagina value=0}
{assign name=enlaces value=0}

<div class="rastromigas"><a id="arriba" name="arriba"></a>

<a href="." alt="{dicc name=dicc value='inicio'}" title="{dicc name=dicc value='inicio'}">{dicc name=dicc
value='inicio'}</a> >
{if name=seccion field=$tipo_conte sen=0 value=0}{if name=contenido_seccion field=//CAMPO_ID sen=0 value=14}

<a href="{enlace name=enlace seccion=//CAMPO_ID ctipo=CONTENIDO_NINGUNO contenido=0 accion=" ss|=03}"
alt="{item name=campo field=//CAMPO_TITULO}" title="{item name=campo field=//CAMPO_TITULO}">{item
name=campo field=//CAMPO_TITULO size=20}</a> >
{/if name=contenido_seccion}{/if name=seccion}
{item name=titulo field=/CAMPO_TITULO size=20 format=...}</div>

<div class="contenidohomesa" >
<div class="barratitulo_sa">{if name=sec_por field=//CAMPO_ID sen=0 value=14}{item name=titulo
field=//CAMPO_TITULO size=30 format=...}{/if name=sec_por}{if name=sec_por field=//CAMPO_ID sen=1
value=14}{item name=titulo field=/CAMPO_TITULO size=30 format=...}{/if name=sec_por}</div>
<div>
<H5>{if name=sec_por field=//CAMPO_ID sen=0 value=14}{item name=titulo field=//CAMPO_TITULO}&nbsp;-
&nbsp;"{/if name=sec_por}{item name=titulo field=/CAMPO_TITULO}{if name=sec_por field=//CAMPO_ID sen=0
value=14}"{/if name=sec_por}</H5>
<p>
{if name=grafico field=/CAMPO_GRAFICO sen=0 value=vector()}
<IMG src="{item name=titulo field=/CAMPO_GRAFICO/CAMPO_ARCHIVO}" alt="{item name=titulo
field=/CAMPO_TITULO}" title="{item name=titulo field=/CAMPO_TITULO}" align=left hspace=5 vspace=5 border=0>
{/if name=grafico}
{if name=resumen field=/CAMPO_RESUMEN sen=0 value="}
<P class=fondosa align=left>{item name=titulo field=/CAMPO_RESUMEN}</p>
{/if name=resumen}
{item name=titulo field=/CAMPO_TEXTO}

</p>

'7me“(aweb 2.0 Pagina 16 de 18 '7me“(we““"j



Programacion de Plantillas 20070117-rev.0

10. Ejemplo de process.inc.

include "formularios.inc";
define (FRONT_REG_PAGINA, 10);

function template_preprocess($MKW) {
return;
¥

function template_posprocess($MKW) {

$seccion = $MKW->GetDataSeccion();
$accion = $MKW->GetDataAccion();
$tipo_conte = $MKW->GetDataTipo();
$orden = $MKW->GetDataOrden();
$filtro = $MKW->ctriseccion;

$idioma = $MKW->GetDataldioma();
$get = $MKW->GetDataGet();

if ($seccion[CAMPO_NOMBRE]=="PORTADA") {
for ($i=2; $i<=4; $i++) {
$menu = $seccion[CAMPO_MENUS][6][CAMPO_ENLACES][$i];
for ($j=1; $j<=(integer)$menu[CAMPO_ENLACES][CAMPO_NUMERO]; $j++)
$menu[CAMPO_ENLACES][$j]1["enlace"] = $MKW-
>GetContenido($menu[CAMPO_ENLACES][$j][CAMPO_CONTENIDO]);
$seccion[CAMPO_MENUS][6][CAMPO_ENLACES][$i] = $menu;

¥
$MKW->SetDataSeccion($seccion);
b

switch ($orden) {
case "contacto":
$contenido = $MKW->GetContenido("EMAIL/contacto");
$resOk = $MKW->EnviarEmail ($MKW->boletin_email,$MKW->boletin_entidad,$MKW-
>boletin_email, $MKW->boletin_entidad,$contenido, $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_POST]);
if ($resOk) {
$contenido = $MKW->GetContenido("MSG/envio_ok");
} else {
$contenido = $MKW->GetContenido("MSG/envio_no");
$accion="contacto";

¥
$MKW->SetDataContenido($contenido);
break;
case "enviar":
$contenido = $MKW->GetContenido("EMAIL/enviar_amigo");
$toname = $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_POST]["nombredestino"];
$to = $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_POST]["emaildestino"];
if ($toname=="" || $to=="")
$resOk=false;
else
$resOk = $MKW->EnviarEmail ($MKW->boletin_email,$MKW-
>boletin_entidad,$to,$toname,$contenido, $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_POST]);
if ($resOk) {
$contenido = $MKW->GetContenido("MSG/envio_ok");
} else {
$contenido = $MKW->GetContenido("MSG/envio_no");
$accion="enviar";

¥
$MKW->SetDataContenido($contenido);
break;
default:

b

$contenido=$MKW->GetDataContenido();
switch ($accion) {
case "registro":
$contenido = $MKW->GetContenido("INFO/contacto");
case "contacto":
$contenido[CAMPO_TEXTO] .= FormContacto();

'7merKaWEb 2.0 Pagina 17 de 18 '7me“(we“ﬂﬂ



Programacion de Plantillas 20070117-rev.0

break;
case "enviar":
$contenido[CAMPO_TEXTO] .= FormEnviarAmigo();
break;
case "buscar":
$contenido=ResultadoBusqueda(&$MKW, $filtro, $idioma);
break;

s
$MKW->SetDataContenido($contenido);
return;

b

//*******************************************************************************

// Esta funcién podria haberse creado usando una plantilla
//*******************************************************************************

function ResultadoBusqueda($MKW, $filtro, $idioma) {

$busqueda.="<div id=\"resultadosLotus\"><img border=\"0\" width=\"60\" src=\"./img/documento.gif\"
alt=\"Representacion de un documento\" style=\"float:left\"/></a>Se han encontrado <strong>0 referencias</strong> en
las Bases de Datos de Actualidad Cientifica. En la parte inferior puedes visualizar las referencias (contenidos) encontrados
para ese término en el resto de secciones de alimentatec.<div class=\"spacer\"></div></div>";

$keyword = $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_POST]["keyword"];
if ($keyword=="")
$keyword = $MKW->Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_GET]["keyword"];

$resultado=$MKW->GetContenidosCriterio($keyword,"conFecMod DESC", $MKW-
>Migas[ CAMPO_MIGAS_PARAMETROS][CAMPO_MIGAS_GET]["pagina"], FRONT_REG_PAGINA);

$ini = ((($resultado[ CAMPO_PAGINA]-1)*FRONT_REG_PAGINA)+1);

$fin = $ini + ($resultado[CAMPO_NUMERO])-1;

$busqueda.="<div class=\"paginacion\">Encontados ".$resultado[CAMPO_TOTAL]." registros. Mostrando del $ini a
$fin<br/>Pagina&nbsp;";

for ($i=1; $i<=%resultado[CAMPO_PAGINAS]; $i++) {
if ($i==%$resultado[CAMPO_PAGINA])
$busqueda.=(($i<10)?"0":"").$i;
else
$busqueda.="<a href="".FormatHref($idioma, 14, CONTENIDO_CONTENIDO_CONTENIDO, 0,
'buscar&keyword=".$keyword.'&pagina=".$i)." title="pagina".$i."" alt="pagina".$i."">".(($i<10)?"0":"").$i."</a>";
if ($i<$resultado[CAMPO_PAGINAS]) $busqueda.="&nbsp;";

$busqueda.="</div><br /><br />";

for ($i=1; $i<=%resultado[CAMPO_NUMERO]; $i++) {

$campos = $resultado[$i];

$busqueda.="<h5 class=\"buscador\"><a href="".FormatHref($idioma, $campos[CAMPO_SECCION],
CONTENIDO_CONTENIDO_CONTENIDO, $campos[CAMPO_ID])."" title="".$campos[ CAMPO_TITULO]."
alt="".$campos[ CAMPO_TITULO]."'>- ".$campos[CAMPO_TITULO]."</a></h5>";

$resumen = strip_tags($campos[ CAMPO_RESUMEN]);

if (strlen($resumen)>300)

$resumen = substr($resumen, 0, 300)."...";
$busqueda.="<p>".$resumen."</p>";

¥

$contenido = $MKW->GetContenido($filtro."/MSG/busqueda");
$contenido[ CAMPO_TEXTO] .= $busqueda;
return ($contenido);

//*******************************************************************************
// Podria haberse hecho de la siguiente manera:

// 1. Crear una instancia de la clase MKWTemplate y configurarla para que coja una plantilla
// de nombre “resultado”, por ejemplo.

// 2. Ir recogiendo el resultado de la busqueda en una variable de tipo vector.

// 3. Procesar la plantilla con la variable resultante.

// 4. Devolver el resultado.

//*******************************************************************************

'7me“(aweb 2.0 Pagina 18 de 18 '7me“(we““"j



