 (

Sistemas de control de versiones
Merkatu Interactiva

)

Sistema de control versiones

Un sistema de control de versiones es un software que sirve para gestionar distintas versiones de un fichero, normalmente código fuente, documentación o ficheros de configuración. Normalmente consiste en una copia maestra en un repositorio central y un programa cliente con el que cada usuario sincroniza su copia local.
A continuación se detallan las ventajas de utilizar un sistema de control de versiones:
· Actualización de ficheros modificados: El programa cliente recorre el código que se encuentra en local y lo sincroniza con el código que se encuentra en el repositorio.

· Historial de cambios: El repositorio guarda registro de todos los cambios realizados. Por tanto es posible recuperar cualquiera de las versiones anteriores de cualquier fichero.

· Acceso Remoto: Es posible acceder remotamente al repositorio vía Web.

Arquitectura de un sistema de control de versiones

Software
Subversion – SVN

Subversion (SVN) es un sistema de control de versiones de software libre cuya licencia es de tipo Apache/BSD.
Gracias a que el acceso al Subversion es vía Web, son muchas las personas que pueden acceder al código que se encuentre en el repositorio. El hecho de que varias personas puedan modificar y administrar el mismo conjunto de datos desde sus respectivas ubicaciones fomenta la colaboración en los proyectos. Además como el código se encuentra bajo el control de versiones no hay razón para pensar que se vaya a perder el código o la calidad del mismo.

Tortoise SVN

TortoiseSVN es un cliente gratuito de código abierto para el sistema de control de versiones Subversion.
Metodología de trabajo

Conceptos básicos

Con el fin de comprender el funcionamiento de un sistema de control de versiones es necesario describir los siguientes conceptos:
· Repositorio: Servidor donde se almacena el código.

· Ramas: Variaciones del proyecto original que se crean al agregar nuevas características, probar nuevas funcionalidades o manejar versiones.

· Trunk: Rama principal del proyecto. Este directorio se caracterizará por ser uno de los directorios con mayor actividad. En él se almacenarán las últimas implementaciones.

· Tags: Rama donde se almacenan instantáneas del proyecto. Estas instantáneas relacionan el proyecto con un instante de tiempo. Se podrían crear tags para disponer de:

· Versiones (Release) de un proyecto.
· Presentaciones o demos.

· Branch: Variación del proyecto original con alguna innovación que está en fase de pruebas o que incluso puede llevar hacia un nuevo proyecto. A diferencia de las etiquetas tags, las ramas son instantáneas que evolucionan. Por lo tanto, en este directorio almacenaremos una instantánea que bien se ha podido obtener de la rama principal trunk, de otra rama branch o de una etiqueta tag. Variación del proyecto original con alguna innovación que está en fase de pruebas o que incluso puede llevar hacia un nuevo proyecto.

· Acciones comunes: Las acciones más comunes que realizará un desarrollador en su día a día son:

· Ckeckout: Sirve para bajar a local un proyecto existente en el repositorio.

· Update: Sirve para descargar posibles actualizaciones del código.

· Commit: Sirve para subir al repositorio modificaciones realizadas en local.

· Add: Añadir un archivo no versionado al repositorio.

Jerarquía de directorios

En el repositorio es habitual encontrar un directorio por proyecto y dentro de cada uno de los proyectos la siguiente estructura de directorios.

Jerarquía de directorios

Procedimiento

El uso habitual de un sistema de control de versiones es el siguiente:
1. Creación del proyecto en el Repositorio.

	#Creación del directorio principal
svn mkdir http://127.0.0.1:80/repomerkatu/proyecto1 m "Creamos proyecto1"

#Importación del código inicial al proyecto recién creado
svn import . http://127.0.0.1:80/repomerkatu/proyecto1 -m "Importacion inicial"

2. Asignación de los recursos que van a poder acceder al proyecto.

3. Descarga del proyecto a local (Checkout).

	#Checkout del proyecto
svn checkout http://127.0.0.1:80/repomerkatu/proyecto1

4. Ciclo de trabajo habitual:

1.
2.
3.
4.
4.1. Modificación de los ficheros.

4.2. Actualización de ficheros en local (Update).

	#Se actualizan todos los archivos del directorio en el que nos encontramos
svn update

#Se actualiza un fichero específico
svn update clsCliente.php

4.3. Resolución de posibles conflictos. Cada vez que se identifica un conflicto se generan una serie de ficheros en local.

	#El fichero con los cambios en local y con marcas de conflictos
clsCliente.php

#El fichero con los cambios en local
clsCliente.php.mine

#Revisión antes de los cambios en local
clsCliente.php.r4

#Última revisión del repositorio
clsCliente.php.r5

Para solucionar un conflicto se puede:
· Descartar los cambios locales, o los cambios del servidor. Para ello es necesario sobrescribir el fichero original clsCliente.php por alguna de las copias que han aparecido.

· Solucionar el conflicto editando a mano el fichero.

5. Actualización de ficheros en repositorio (Commit).
Nota: Es posible ejecutar todos los comandos de Subversion mediante el menú contextual que proporciona TortoiseSVN.

Subidas automáticas de los proyectos

Con el fin de que la subida de un proyecto a un entorno (integración, preproducción, producción) esté completamente controlada y sea lo más eficiente posible, sería recomendable disponer de un sistema que fuera capaz de obtener una versión de un proyecto del SVN y que la subiera automáticamente al entorno deseado.

Archivos de configuración

Debido a que los archivos de configuración de un proyecto pueden ser diferentes según el entorno en el que nos encontremos, es necesario tenerlos identificados a la hora de realizar subidas a los diferentes entornos.
Se sugiere crear una carpeta config-files en cada una de los proyectos. Dentro de esta carpeta existirán tantas carpetas como entornos dispongamos y en cada una de éstas se ubicarán los archivos de configuración necesarios.

Archivos configuración por entorno

Nota: En el caso de que un archivo de configuración se encuentre dentro de un directorio del proyecto como por ejemplo “componentes/com_users/setup.php”, se debe crear la misma jerarquía de directorios en la carpeta config-files, es decir:
· Integración: “config-files/int/componentes/com_users/setup.php”
· Preproducción: “config-files/pre/componentes/com_users/setup.php”
· Producción: “config-files/pro/componentes/com_users/setup.php”

Procedimiento

Alternativa 1
El sistema de subida automática funcionaría de la siguiente manera:
1. Descarga (Checkout o Update) del proyecto deseado
2. Realizar un Export para eliminar los archivos .svn
3. Acceder a config-files, copiar el contenido correspondiente al entorno deseado y pegarlo en el proyecto. Con esta acción conseguimos sustituir los archivos de configuración local por los archivos de configuración que realmente deseamos subir.
4. Subida del proyecto. Dependiendo del tipo de proyecto este proceso puede variar, ya que puede ser necesario un volcado de BD, etc..
5. [bookmark: _GoBack]Reinicio del apache.

Alternativa 2
El sistema de subida automática funcionaría de la siguiente manera:
1. Descarga (Checkout si es la primera vez o Update de la versión deseada) del proyecto deseado.
2. rsync (--exclude = .svn) entre la carpeta del proyecto que acabamos de actualizar y la carpeta del proyecto del entorno deseado (ej. producción).
3. Acceder a config-files, copiar el contenido correspondiente al entorno deseado y pegarlo en el proyecto. Con esta acción conseguimos sustituir los archivos de configuración local por los archivos de configuración que realmente deseamos subir.
4. Reiniciar apache si es necesario (si se modifica .htaccess, httpd.conf o php.ini)

Funcionalidades del front del gestor automático de subidas

· Sistema de acceso al sistema a través de login/password
· En base al usuario introducido el sistema mostrará únicamente acceso a los proyectos para los que tiene permiso ese usuario.
· En base al usuario introducido además de controlar el acceso a los proyectos, también se controlará el acceso a los diferentes entornos dentro de un proyecto.
· Se permitirá seleccionar la versión de svn concreta que se quiere subir.

Casos de uso

A continuación se plantean diferentes casos de uso que se pueden dar a la hora de desarrollar proyectos.
Desarrollo y diseño en la misma LAN

Para este caso la solución recomendada es la siguiente:
· El servidor de SVN estaría dentro de la misma LAN que el resto de los equipos y no debería ser público.
· Tanto los equipos de diseño como los de desarrollo trabajarían con un Apache + PHP en local. Dentro del propio proyecto debería haber una carpeta en el que se haría referencia al php.ini y al httpd.conf para que sea el mismo en todos los equipos. La versión de Apache y la de PHP debería ser la misma en los entornos de desarrollo, integración (srv-web), preproducción (pruebas) y producción.
· Para no introducir complejidad en la metodología de trabajo se recomienda NO tener replicada la BBDD en local; la app en local apuntaría a la BBDD de integración y en casos puntuales a la de preproducción.
· En caso de disponer un sistema automatizado de subidas, tanto diseñadores como jefes de proyecto tendrían capacidad de realizar subidas a integración (srv-web). Para realizar subidas a preproducción y producción serían los jefes de proyecto los únicos con autorización para ello.

Modelo mixto sin restricción de visibilidad de archivos

En este caso de uso no todos los equipos estarían dentro de la LAN de Merkatu. Dentro de esta casuística se presentan dos variantes, cuando se restringe la visibilidad de ciertos archivos para que el equipo de fuera de la red no pueda tener acceso a ellos, o cuando todos los equipos tienen visibilidad total de todos los archivos; un ejemplo claro sería cuando se trabaja con un desarrollador en Vitoria-Gasteiz. Este caso de uso detalla este último caso.
· El servidor de SVN estaría dentro de la LAN de Merkatu, pero tendría visibilidad pública. Se podría restringir el acceso externo a una IP concreta a través del firewall.
· Todos los equipos tendrían Apache + PHP en local.
· La base de datos de integración (srv-web) debería ser accesible desde el exterior, restringida por IP de acceso, para mayor seguridad.
· Se podría dar acceso a la plataforma de subidas, en el caso de que la hubiera, a los equipos de Vitoria (vía http con restricción de IP o vía VPN), para que un Jefe de proyecto de Vitoria, pudiera realizar una subida a integración, preproducción o producción.

Modelo mixto con restricción de visibilidad de archivos

En este caso de uso existen también equipos fuera de la LAN de Merkatu. Para este caso se desea que el equipo que está fuera de la LAN no tenga acceso a ciertos ficheros. Un ejemplo podría ser cuando se trabaja con diseñadores externos.
· El servidor de SVN residiría en la LAN de Merkatu, pero con visibilidad pública.
· El equipo externo no debe tener nada instalado. Únicamente se debería de bajar a local los ficheros a los que tiene acceso.
· El equipo externo tendría acceso al sistema de subidas vía web o vía VPN.
· Una vez hecha la subida a integración (srv-web), se comprobaría el funcionamiento del portal a través de la conexión con la VPN.

1

oleObject2.bin
Repositorio

proyecto1

proyecto2

proyecto3

trunk

branches

tags

image3.png
&)dentay

&) defaultstyle.py
Glzipy
&)heppy

Glomcy paste
Gtesty | Posteshoriar

Gltves Sharewith

£ SVN Update:
SV Comit..
% N

image4.emf
proyecto1

trunk config-files

administrator

cache

configuration.php

...

int

pre

pro

configuration.php

configuration.php

configuration.php

Archivos de configuración por entorno

Archivo de configuración en local

oleObject3.bin
trunk

config-files

administrator

proyecto1

cache

configuration.php

...

int

pre

pro

configuration.php

configuration.php

configuration.php

Archivo de configuración en local

Archivos de configuración por entorno

image5.emf
WWW

Desarrollo 1

Desarrollo 2

Diseño 1

Diseño 2

Srv-web [int]

Pruebas [pre]

Producción

oleObject4.bin
�

�

�

�

�

�

image6.emf
WWW

Desarrollo 1

Diseño 1

Srv-web [int]

Pruebas [pre]

Producción

Bilbo

Desarrollo 2

Gasteiz

oleObject5.bin
�

�

�

�

�

�

�

image7.emf
WWW

Desarrollo 1

Diseño 1

Srv-web [int]

Pruebas [pre]

Producción

Bilbo

Diseño ext

oleObject6.bin
�

�

�

�

�

�

image1.emf
SVN Web

Tortoise SVN

Repositorio SVN

Tortoise SVN

Tortoise SVN

Web

oleObject1.bin
�

�

�

�

image2.emf
Repositorio

proyecto2

proyecto3

proyecto1

trunk

branches

tags

